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Executive Summary  
 
Shared micromobility services provide clean mode choice alternatives (e.g., shared bicycles, scooters) that 
could potentially help cities shift towards auto independence. There are, however, concerns that the 
benefits of these services are inequitably distributed among different population groups. To address these 
concerns, studies have attempted to understand the travel demand patterns associated with 
micromobility services, and researchers have proposed models for the planning and operations of 
micromobility systems based on equity considerations. This research report contributes to this literature 
by presenting a case study of a dockless e-scooter system in Mayagüez, Puerto Rico, and by proposing an 
optimization-based framework to guide the vehicle rebalancing operations of dockless micromobility 
services according to efficiency and equity objectives. 

The case study of the Mayagüez dockless e-scooter service (MDES) uses data collected through 
an online survey, data provided by the micromobility operator, and data retrieved from US Census 
databases. The objectives of the case study were to i) explore the characteristics of MDES users and 
nonusers, ii) examine the relationship between the sociodemographic characteristic of the study area and 
observed trip generation levels, iii) propose spatial access indicators and apply them in the MDES service 
area, and iv) discuss the equity in spatial access and the congestion reduction potential of MDES. This 
analysis provides insights on a micromobility system that operates in a congested, auto-centric city with 
limited public transportation alternatives and that serves a population facing downward economic and 
demographic trends. The main findings of the case study are:   

 

• Service users tended to be young and male. In an online survey, 38% of women and 48% of males 
indicated that they were service users. An analysis of the survey responses suggests that people 
in the 18-to-26 age group are at least two times more likely to be e-scooter users than people in 
other age groups.    

• Trips were concentrated in and around a university’s campus. Approximately 78% of e-scooter 
trips started or ended at UPRM. Outside UPRM, trips primarily concentrated in neighborhoods 
with large student populations.   

• Costs, inadequate pavement conditions, lack of dedicated space for on-street riding, and safety 
concerns were identified by survey respondents as the main reasons for not using the service. 

• Traffic congestion and lack of parking spaces were identified among the main reasons for using 
MDES, which suggest that the service could have reduced auto trips in the service area. The 
magnitude of the auto trip reduction needs to be estimated for the case of Mayagüez, but the 
results point to the potential capacity of micromobility services to replace short auto trips, 
particularly in cities that lack effective public transportation services.   

• There were differences in spatial access among neighborhoods. This observation could be 
explained by the spatial distribution of the main system users (university students), the 
sociodemographic characteristics of the population in Mayagüez (generally low-income and 
older), and the rebalancing operations being aimed at satisfying user demand. 

• Regression analyses suggest that income levels, mixed land use, and university locations are 
positively associated with e-scooter trip demand.   
 

Inequality in spatial access to dockless micromobility services can be mitigated by implementing 
equity-conscious vehicle relocation strategies. To this end, the second main contribution of this project is 
a methodology that integrates two optimization models to generate vehicle rebalancing plans that reflect 
equity concerns. In the first model, target vehicle distributions are identified such that the predicted 
efficiency and equity performance of the system is maximized. Two objective function formulations were 
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proposed to account for spatial and social equity considerations. The second model is a pickup and 
delivery problem that balances efficiency and equity objectives when searching for the optimal spatial 
distribution of the vehicle fleet. The application of this two-step methodology is illustrated through 
numerical experiments. Simulation results suggest that, relative to efficiency-focused rebalancing, there 
are scenarios in which equity-focused rebalancing operations could result in minor reductions in total trips 
and significant improvements in spatial access to micromobility services. As the simulations were based 
on the MDES characteristics and on assumed behavioral parameters, additional studies are needed to 
reach generalizable conclusions on the likely effects of equity-focused rebalancing operations on the 
overall performance of dockless micromobility services. 
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1. Introduction 
 
Shared micromobility services could help communities reduce their dependence to private vehicles, 
encourage physical activity, drive technological innovations, and foster economic growth, among other 
potential benefits. Naturally, there are also potential costs and concerns associated with shared 
micromobility. Chief among these concerns is the possibility that disadvantaged communities will not 
have equitable access to emerging travel alternatives. In response to this concern, governments have 
enacted policies intended to ensure an equitable allocation of micromobility resources. For example, in 
Chicago’s e-scooter pilot program, companies were required to distribute half of their e-scooter fleets 
within underserved community areas, both in their morning fleet distributions and subsequent 
rebalancing operations (City of Chicago, 2020). The mixed results from the Chicago program suggest that 
much remains to be studied regarding the policies and methods that have been developed to ensure 
equitable access to micromobility. The research community has also engaged with these equity issues, in 
part by studying the response of different communities to micromobility services, characterizing 
micromobility-related travel patterns, and proposing methods to plan and operate these systems 
efficiently and equitably. This research report contributes to these efforts. 

 The objective of this report is twofold. The first main objective is to present a case study of the 
dockless e-scooter rental service in Mayagüez, Puerto Rico (PR). Besides documenting the micromobility 
experience of a city within the understudied Latin American context, this is also a case study of a system 
that operates in an auto-oriented urban environment with limited public transportation options, and that 
serves communities facing a depressed economic outlook, downward demographic trends, and the 
aftermath of recent hurricanes and earthquakes. The primary research questions related to this first 
objective are: 

i. What were the user characteristics in the Mayagüez dockless e-scooter service (MDES)?  
ii. What sociodemographic and land-use factors explain the demand levels for MDES? 
iii. What were the spatiotemporal patterns of e-scooters trips in MDES?  
iv. Did MDES have an impact on traffic congestion? 
v. Was there equitable spatial access to MDES?  

To help answer the last question, methods for quantifying spatial access in the context of dockless 
micromobility systems were developed and applied using MDES data. The case study contributes to 
research on travel behavior and micromobility usage patterns. 

 The second main objective of this report is to present an optimization-based decision framework 
that considers efficiency and equity goals in the vehicle rebalancing operations of dockless micromobility 
services. The proposed approach uses models to predict future states of the micromobility system. Based 
on these states rebalancing decisions are made so that the vehicle distribution reflects a target (ideally 
optimal) distribution, as defined by equity and efficiency performance objectives. Approaches to 
quantifying accessibility and equity from a spatial and social perspective are considered in the model 
formulation. The spatial equity measure proposed considers distance-based access to the vehicle fleet at 
the level of building units, while the social equity measure proposed accounts for both the distribution of 
vehicles and the characteristics of individuals. Efficiency is considered from the perspectives of a firm 
interested in maximizing the number of trips and of a planning agency interested in achieving objectives 
related to the transportation system performance, such as reducing traffic congestion.  
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Besides this introduction, this report is composed of three additional chapters. 

• Chapter 2: User Characteristics, Travel Patterns, and Spatial Access in MDES. The MDES case study 
is presented in this chapter. Also, network-based measures used to quantify spatial access to 
dockless micromobility services are proposed and applied to the MDES case. 

• Chapter 3: Vehicle Rebalancing to Improve Equity in Access to Dockless Micromobility Systems. 
In this chapter, the rebalancing models are discussed. The results from numerical tests 
performed with the proposed methods are presented.   

• Chapter 4. Conclusions and Future Research Directions 
Methods used to adjust trip record data, train machine learning models, and solutions to the proposed 
optimization models are discussed in the report’s appendices. In this report, the term “shared 
micromobility” refers to the shared use of bicycles, scooters, or other low-speed vehicles that can be 
reserved or rented for relatively short periods (Shaheen and Cohen, 2019). Although studies that examine 
station-based micromobility services will be reviewed, a dockless e-scooter service is the focus of the case 
study and the rebalancing method proposed applies primarily to dockless micromobility services, as 
previously mentioned.      
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2. User Characteristics, Travel Patterns, and Spatial 
Access in MDES 
 

The study of micromobility user characteristics and spatiotemporal travel patterns can have multiple 
objectives, including advancing basic knowledge of human travel behavior; supporting the development 
of travel demand models that can be used by communities and their agencies to plan, design, or evaluate 
transportation projects or policies; and guiding the investment and operational decisions of 
transportation service firms. This project adds to the growing body of literature that examines the 
experiences of communities with emerging transportation mode alternatives, and it presents methods to 
assess spatial access to these new systems. The main objectives of the research presented in this chapter 
are to:  

i. Explore the characteristics of MDES users and nonusers. An online survey was conducted in which 
respondents were asked about their opinions and experiences with MDES. The survey responses 
were analyzed using exploratory data analysis methods and logistic regression. Additionally, the 
travel behavior of MDES users was examined using trip data provided by the system operator. 
This data was analyzed using clustering methods.  

ii. Examine the relationship between the sociodemographic characteristic of the study area and 
observed trip generation levels in MDES. A database was created that combined US Census 
sociodemographic data and land use information of the study region with the trip arrival and 
departure counts at the level of cells in a grid-based zonal system. Regression analysis methods 
were used to find relationships between sociodemographic and land-use variables and the trip 
arrival and departure counts.  

iii. Evaluate the spatial access to MDES of the neighborhoods in the study area. Network-based 
methods for computing spatial access indicators are proposed and applied using the MDES trip 
data.  

iv. Discuss the equity in spatial access and the congestion reduction potential of MDES.  
 
The sections that follow discuss in detail the data and methods used to accomplish the research 

objectives. The rest of the chapter is divided into seven sections. In the next section, literature related to 
the equity and spatiotemporal analyses in the context of docked and dockless micromobility is reviewed, 
as well as previous studies that examine the definitions of three key concepts: equity, justice, and 
accessibility. The second section gives background information on the study area and MDES. This is 
followed by a description of the data sources used in the analysis (third section) and the methods used in 
the study (fourth section). Results are presented in the fifth section. In the last two sections, a general 
discussion of the results and closing remarks are offered.   

 

2.1. Literature Review on Travel Patterns in Micromobility Services 
and Equity 

2.1.1. Definitions of Equity and Accessibility in Transportation  
Research on micromobility services has explored their operational characteristics, the characteristics of 
micromobility users, and the related travel activity patterns, as well as the equity and policy questions 
that arise with the arrival of new transportation alternatives in the public space. This equity research 
builds on previous work that examines the fairness in the distribution of benefits and costs of 
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transportation infrastructure and services. Karner et al. (2020) note that transportation equity research 
and practice is generally concerned with identifying who benefits and who is burdened by a transportation 
project, which in turn requires the selection of measures relative to which equity can be assessed (i.e., 
equity “of what”).  They also highlight the distinction between transportation justice and transportation 
equity, the former being primarily concerned with the transformation of social structures that give rise to 
inequality, while the latter is primarily concerned with “processes and distribution of social goods and 
opportunities”.  Pereira et al. (2017) explain that concepts of equity draw from theories of justice and that 
the academic literature often uses the terms equity and justice interchangeably, as they did in their work. 
Relevant theories of justice include utilitarianism, libertarianism, intuitionism, Rawlsian egalistarism, and 
the capabilities approach. Pereira et al. argue that, regarding distributive justice concerns, the focus on 
transportation-related analyses should be on accessibility as a human capability.  

Previous research focused on the distributive outcomes associated with transportation systems that 
have explored how benefits and costs are distributed among individuals of different groups (vertical 
equity) and individuals of the same group (horizontal equity) (Litman, 2005). The concept of spatial equity 
is also relevant to micromobility studies, which accounts for the spatial distribution of impacts of a project, 
service, or policy (Levinson, 2010). In the context of public transportation options, fairness is often 
evaluated in terms of accessibility, which can be understood as the potential that individuals have for 
reaching destinations or opportunities via a transportation alternative (Guo et al., 2020). As Páez et al. 
(2012) discuss, there are multiple ways of measuring accessibility, which could be distinguished, for 
example, based on their normative (e.g., how far it is reasonable to travel) and positive aspects (e.g., how 
far people actually travel).  

 In this project, equity is discussed in terms of accessibility. Specifically, in the context of the 
dockless micromobility system considered, accessibility is defined relative to the ease with which a person 
can access a micromobility vehicle. It is posited that a person has access to the system if they have 
opportunities to use the system, and an opportunity arises if there are vehicles close to the person and if 
the person has the capacity to use a vehicle. This perspective will be referred to as equity in access. In this 
chapter, measures are applied and proposed to address the spatial access component of equity. In 
Chapter 3, models are proposed to measure equity in terms of the capacity of individuals to use the 
system.  

2.1.2. Equity and Spatiotemporal Analysis in the Context of Docked Micromobility 
Considerable work has been completed to understand station-based (or docked) bike-sharing systems 
(SBS), one of the earliest forms of micromobility (Fishman, 2016). In addition to exploring operator 
characteristics (Shaheen et al., 2013), researchers have examined the sociodemographic of registered 
bike-share users and of the cities in which these systems operate. They have found differences in the 
usage patterns and access of people of different genders, age groups, races, educational attainment, and 
income levels. For example, in a London SBS, Beecham and Wood (2014) found that males performed 
more commuting trips, whereas females performed more leisure-oriented trips. Wang and Akar (2019) 
observed in a New York City BSS that, on average, males completed close to 1,500 trips per hour versus 
approximately 500 trip completions per hour by females; similar gender gaps have been observed in other 
systems, and factors that explain these differences have been explored (Shaheen et al., 2013). Using data 
from an online survey, Bachand-Marleau et al. (2012) determined that the primary reason people used a 
BSS in Montreal, Canada was that it was useful for one-way trips. The researchers also estimated a logistic 
regression model that suggested that being in proximity to a station and being a bus user were positively 
related to BSS usage, while females and recreation-only cyclists were less likely to use the system. 

Besides observing a gender gap, Wang and Lindsey (2019) found that age is inversely correlated 
with the use of an SBS in the Minneapolis-St. Paul area, and that 30-day and annual SBS members living 
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in neighborhoods with higher concentrations of minorities and classified as having lower socioeconomic 
status perform more trips than those in wealthier, predominately white neighborhoods. However, they 
note that the data in the study does not link demographic information to trips. In an analysis of 29 BSSs 
in the US, Barajas (2018) found that higher proportions of White residents are observed in block groups 
within a 5-minute walk of a bike-sharing station. Barajas also concluded that the systems served higher-
paying skilled jobs. Using data from Chicago, Qian and Jaller (2021) analyzed the destination choice 
behavior of population groups classified as disadvantaged, and they concluded that these groups make 
longer SBS trips to access opportunities, such as grocery stores and places of work and that they are more 
sensitive to the costs structures. Generally speaking, earlier studies also suggest an overrepresentation of 
white, higher income, and college-educated individuals among SBS users (Shaheen, 2012; Smith et al., 
2015).  

However, studies also suggest that, relative to the general cyclist population, young females from 
lower household incomes are more likely to be users of SBS (Buck et al., 2013), as well as that an extension 
of SBS to economically disadvantage neighborhoods increases the participation of residents in those 
communities (Goodman and Cheshire, 2014). Ursaki and Aultman-hall (2015) suggested several strategies 
to improve equity in micromobility programs, including allocating sufficient vehicles to low-income 
neighborhoods, providing discounted rates for people who need them, and installing bicycle 
infrastructure in diverse communities.  

The study by Chen et al. (2019) is noteworthy because it proposes a methodology to assess SBS 
accessibility and equity at the personal level, as opposed to the more common zone-based analyses found 
in the literature. In Chapter 3, the subject of person-level measures of accessibility is revisited in the 
context of dockless micromobility systems.  

2.1.3. Equity and Spatiotemporal Analysis in the Context of Dockless Micromobility 
Dockless bike-sharing services (DBS), which have rapidly expanded worldwide in recent years, appear to 
improve user experience relative to the docked alternative (Chen et al., 2020). Shen et al. (2018) 
concluded that, in Singapore, DBS trips are positively associated with high-density commercial areas, 
diverse economic activity, and supportive cycling infrastructure, among other factors. According to Gu et 
al. (2019), in the context of China, DBS users tend to be young and college-educated, and the gender gap 
is nearly nonexistent. In Seattle’s DBS program, no neighborhood was consistently excluded from access 
to the system, although the spatial equity analysis of Mooney et al. (2019) revealed that neighborhoods 
with a higher proportion of college-educated, high-income residents, and more community resources had 
more bikes. The researchers quantified neighborhood access to the DBS by computing the average 
number of bikes available per resident per day; bike idle times were also measured. Hirsch et al. (2019) 
report that users of Seattle’s DBS program were disproportionally young, White, male, and bicycle owners, 
and they lived closed to the city center. In a study of Boston’s DBS, Gehrke et al. (2021) found evidence of 
insufficient spatial access to dockless bikes in neighborhoods with a higher share of renter-occupied 
housing and Black residents. They also found that neighborhoods with a high share of carless households 
were positively associated with dockless bike-share access and trip generation, thus suggesting that 
micromobility services can help foster residential and transportation choices that do not depend on 
private autos. In Rethymno, Greece, Bakogiannis et al. (2019) conducted a survey that revealed that the 
principal factors that limit the use of the city’s DBS were the lack of adequate cycling infrastructure and 
traffic safety concerns. 

 Studies that have compared Washington DC’s SBS and dockless e-scooters systems (DES) have 
found differences in the temporal and spatial distribution trips (McKenzie, 2019; Younes et al., 2020). 
Using hierarchical clustering analysis and data from a German DES, Degele et al. (2018) identified four 
types of users, which were characterized by their level of participation in the system, age, and average 
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travel distance, among other factors. Using data from Singapore, Zhu et al. (2020) compared a DBS with a 
station-based e-scooters service; the researchers found the e-scooters had a better performance in terms 
of utilization, as well as a more compact spatial distribution. Also, in a comparison of docked and dockless 
services, Qian et al. (2020) concluded that the dockless system provided greater access and attracted 
more trips in communities of concern in San Francisco.  

 In a comparison of e-scooters usage patterns in Austin, TX, and Minneapolis, MN, Bai and Jiao (2020) 
determined that in both cities e-scooters were predominantly used in the downtown areas and university 
campuses, but there were marked differences in the temporal distribution of trips. In Indianapolis, IN, e-
scooter trips were also observed to be concentrated in downtown and campus areas, and the temporal 
distribution of e-scooter trips did not follow the standard morning/afternoon peak-hour patterns 
observed for other modes (Mathew et al., 2019). The temporal difference was also observed by Zou et al. 
(2020), who used e-scooter trajectory data from Washington DC’s DES to explore the travel paths of e-
scooter trips. Among other things, they found that arterials and local streets with heavy traffic are 
associated with a higher share of e-scooter use. Caspi et al. (2020) used spatial regression analysis to 
examine the influence of the built environment, land use, and demographics on e-scooter trip generation; 
they found that high rates of e-scooter usage were associated with zones with a high density of students.   

 

2.2. Description of Study Area and E-Scooters System 
 

This project provides a case study and analysis of a DES that operates in the Municipality of Mayagüez, 
located in the western region of Puerto Rico, a territory of the United States of America. According to the 
US Census, the municipality has lost more than 10,000 residents in the last decade; its current population 
estimate is approximately 77,000. The median age of residents is 40, 52% of the population is female, 25% 
has a bachelor’s degree or more, 53% live below the federal poverty line, the median household income 
is $14,120, and the unemployment rate is 27%. Around 93% of the population reports driving alone or as 
part of a carpool as their mode of transportation, with only 1.3% using public transportation (Census, 
2019.). These statistics reflect the economic and demographic reality of most municipalities in PR outside 
of the San Juan Metropolitan Area. Mayagüez, however, is a college town, which results in unique 
economic dynamics not observed in neighboring municipalities. Its largest academic institution is the 
University of Puerto Rico at Mayagüez (UPRM), located on the northern outskirts of the city center (the 
Pueblo borough). UPRM has a college population of approximately 13,000 students and 2,500 employees. 
Among students, 40% are estimated to live in the Pueblo borough, with the UPRM-adjacent communities 
of Mayagüez Terrace, Bosques, and Trastalleres being the most densely student-populated areas. Non-
motorized modes of transportation are used by 48% of students that reside in the Pueblo borough 
(Arroyo, 2020). Lastly, students are generally observed to return to their hometowns during the weekends 
and holidays.   
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Figure 1. MDES service area with respect to UPRM and the Pueblo borough, and Mayagüez’s location within PR 

 
On August 3, 2019, a dockless e-scooter rental service (MDES) began operating in Mayagüez within a 
service area that included UPRM, its adjacent neighborhoods, and the center of the Pueblo borough 
(Figure 1). MDES is the first micromobility service to operate in PR. The service area has been periodically 
expanded since its inception. The boundary depicted in Figure 1 represents the 3.5 km2 area in which 
there was service during the 2019-2020 academic year. Skootel, a local micromobility company, owns and 
operates the system. The price of a trip is $1 to activate the e-scooter plus 20 cents per travel minute. The 
hours of operation of the e-scooter service are from 6:00 AM to 8:00 PM; in the morning, the operator 
located e-scooters within the service area, and they were collected after 8:00 PM. Rebalancing operations 
were conducted during the day. The number of units in daily operation was approximately 90 e-scooters 
during weekdays and 30 e-scooters during weekends. The service paused its operations due to the COVID-
19 pandemic.  
 

2.3. Description of Data Sources 
This section describes the three data sources used in the study: the e-scooters trip data, the region’s 
demographic and network data, and data obtained from an online survey. Additionally, a method used to 
disaggregate the available sociodemographic data is discussed.  

2.3.1. E-scooters Data and its Processing  
The operator provided records on approximately 66,000 e-scooter trips completed during the 2019-2020 
academic year. A trip record consisted of the trip date, the trip starting and ending times, the trip starting 
and ending coordinates, the price paid, and unique identifiers for the user and the e-scooter. The main 
source of error in the data was the trip end location, as it appears that the system was registering 
intermediate GPS coordinates as the ending coordinate of trips, meaning that subsequent locations trip 
ends and starts of the same e-scooter would not be reasonably close even considering normal GPS error. 
Approximately 51% of the ending and starting coordinates of successive trips were 150 meters or more 
apart. To address this problem and standard GPS errors, an algorithm was created to match trip starts and 
ends when possible, or it would preserve the coordinate difference, and label it as the result of a 
rebalancing (see Appendix A for details on the algorithm). Less than 1% of trip records were not 
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considered in the study because the ending coordinate was missing. The trip records do not contain the 
users’ sociodemographic characteristics. 

2.3.2. Zonal Systems and Sociodemographic Data 
Figure 2 presents the neighborhood zones identified for the spatiotemporal analysis of trip patterns 
(hereafter, the neighborhood zonal system). These zones aggregate sub-borough zones within the Pueblo 
borough. Zone 8’s southwest “tail” is a scenic path along a coastline park leading to various sports 
facilities, recreational areas, and public housing facilities; a negligible number of records are associated 
with this section. In Figure 3, the grid-based zonal system used for the regression analysis is presented 
(grid-based zonal systems are commonly used in regression analyses, especially if it is reasonable to expect 
spatial dependencies). The cells in the grid have dimensions of 100 meters by 100 meters. The relatively 
small size of the cells responds to the relatively small size of the MDES service area. 
 

 
Figure 2. Neighborhood zonal system within the MDES service boundary 
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Figure 3. Grid zonal system for regression analysis 

 
Sociodemographic information was collected from the American Community Survey (ACS) 2014-2018 

five-year estimates for the Census block groups in Mayagüez (Census, 2019). This is the most 
disaggregated data available, except for the 2010 Census block information of the region. The ACS 
information was used as its more likely to reflect the dramatic demographic shifts observed in PR due to 
the island’s economic crisis, the effects of the 2017 hurricanes, the effects of the 2020 earthquakes, and 
the related migration to mainland US. ACS estimates of population, median age of the population, 
employment and unemployment levels, college population, and income per capita were collected. Besides 
the standard uncertainty associated with ACS estimates, there are at least two basic sources of error that 
likely affect the sociodemographic data used in this study. First, there is a substantial floating student 
population whose size is not insignificant relative to the Pueblo borough population; there are only 
preliminary high-level estimates of the spatial distribution of the UPRM student population (Arroyo, 
2020). Second, the MDES service area does not match standard zonal classifications and there are only 22 
Census block groups in the region of interest, which hinders the estimation of the characteristics of people 
that reside within or close to the area.  

The data aggregation problem was addressed through a data disaggregation procedure. GIS tools 
were used to represent the footprint of every building in the service area and within a 187.5-meter buffer 
beyond the service boundary (187.5 meters is approximately the distance covered by a pedestrian walking 
at 1.25 m/s for 2.5 minutes (Schimpl et al., 2011)). Using Google Earth’s Street View functionality and 
satellite images, each building was assigned a land-use classification (e.g., residential, commercial) and a 
floor count. This task was completed for 5,058 structures. Finally, the population of each Census block 
group was disaggregated proportionally to each residential area polygon within its boundary. Based on 
this procedure, it was determined that 10,280 residents live within the service area. The population of 
each zone in the neighborhood zonal system and each cell in the grid system was computed by aggregating 
the residential polygon population within their respective boundaries. 

Additional GIS analyses were performed to compute cell-level values for median age, employment 
levels, unemployment levels, college population, and income per capita based on the US Census data. The 
sociodemographic attributes assigned to each cell were the same as those of the Census block in which it 
was contained unless the cell intersected more than one Census block. In such cases, each 
sociodemographic attribute (e.g., median population age) was computed by taking the weighted average 
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of the Census block attribute value, with the weight of each block value being the block’s population 
within the cell as indicated by the residential polygons. In Table 1, descriptive statistics are presented for 
the selected variables. For comparison, the median age, unemployment rate and average income in 
Puerto Rico are 43 years, 14.1%, $20,539, respectively (Census, 2019).  

 
Table 1. Descriptive statistics for the cell-level socioeconomic and land use variables 

Variable  Average  St.Dev.  Min Max 

Population (count) 52.7 45.8 0.1 231 

Age (years) 29.1 9.3 21.4 58 

Employment (job/km2) 0.5 0.3 0.1 1.4 

Unemployment (%) 9.0 6.1 1.8 24.8 

Income (US$) 6,366 3,617 357 13,343 

College Students (count) 21.2 32.2 0.0 150 

Commercial Land Use (1000×km2) 0.9 2.0 0.0 14.2 

Mixed Land Use (1000×km2) 0.6 1.6 0.0 13.7 

UPRM Land Use (1000×km2) 0.9 2.7 0.0 17.4 

Industrial Land Use (1000×km2) 0.1 1.3 0.0 22.0 

Public Land Use (1000×km2) 0.3 1.2 0.0 9.3 

 
Notes: The statistics for the socioeconomic variables were computed without taking into consideration cells in which there was 
no population (204 cells had population). For the statistics of the land use variables, the variable values for 350 cells were used. 
St.Dev. stands for “Standard Deviation”.  

 

2.3.3. Transportation Networks 
Two networks were created, namely, a pedestrian network and an e-scooter network. Both networks 
were developed using the US Census Topologically Integrated Geographic Encoding and Referencing 
(TIGER)/Line road shapefiles for the region. The e-scooter network consisted of the road links plus 
pedestrian paths used by e-scooter users inside the UPRM campus (Figure 4). The pedestrian network 
incorporated the link additions made to the e-scooter network, as well as pedestrian bridges and paths 
not accessible to e-scooters. In addition to the nodes associated with the travel links, centroid nodes 
representing each building in the service area were included in the network and linked via centroid 
connectors (connectors linked to the closest network node). To ensure proximity between building 
centroids and their connecting node, links were subdivided (i.e., intermediate nodes added) so that all 
links had a length of 30 meters or less.         
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Figure 4. Main section of e-scooter network   

2.3.4. Online Survey 
A survey about the MDES was distributed via email and social media from March to May 2020. The survey 
targeted the UPRM community and Mayagüez residents. In addition to a section with sociodemographic 
questions, the survey consisted of four sections that explored the extent to which the responder used the 
system and the reasons for their usage levels, among other factors. A total of 417 responses were 
received, of which 11% were removed from the analysis given inconsistent responses. Among the 
accepted responses, 56% of responders indicated that they had never used or had used once the service, 
48% identified as female, 50% identified as male, 79% indicated that they were UPRM students, and 77% 
indicated that they were 26 years old or younger. The online survey helped to explore the 
sociodemographic characteristics of MDES users and nonusers. 

 

2.4. Methods 
This section discusses the methods used to: 

i. explore the characteristics of MDES users, 
ii. explore the spatiotemporal patterns of trips in MDES, 
iii. quantify the relationship between observed e-scooter trip levels and sociodemographic 

characteristics of the region, and 
iv. quantify the spatial access of locations in the MDES service area. 

2.4.1. Methods to Explore the MDES User Characteristics and Usage Patterns at the Person-
Level   

A binary logistic regression model was estimated using the survey data to explore the relationship 
between a person’s sociodemographic characteristics and the likelihood of using MDES. The model’s 
dependent variable had a value of 1 if the person indicated that they had never used the system or had 
used it only once, and 0 otherwise. The considered independent variables include binary (dummy) 
variables for age group (18-20, 21-26, 27-49, 50 and over), gender (1 if female, 0 otherwise), UPRM 
relationship (student, employee, neither), location of residence (e.g., Terrace, outside Mayagüez), and the 
availability of travel modes to the person (bicycle, auto, transit). 
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 Hierarchical clustering was used to group users according to their trip behavior, as recorded in 
the MDES data. For this cluster analysis, each user was characterized according to the following statistics: 
the number of trips performed, the average time between trips (in hours), the standard deviation of the 
time between trips, presence in the system (in days, the time difference between the first and last 
recorded trip), and the probability of performing at least one more trip in a day given that the user had 
already performed a trip in that particular day. Each variable was standardized to ensure consistent 
features. The clustering was performed by applying Ward’s method (Ward, 1963). Data from August 3, 
2019, to December 15, 2019, was used in this analysis; data after this period corresponds to the holiday 
season and to a period in which user behavior was affected by the earthquake events that occurred in PR 
in January 2020.  

2.4.2. Methods to Relate Sociodemographic and Land Use Factors with the Generation of 
MDES trips 

Regression analysis methods were applied to quantitatively relate observed trip generation levels with 
the selected sociodemographic data. Two dependent variables were considered in the analysis: total 
number of cell-level trip departures and the total number of cell-level trip arrivals. Sociodemographic 
variables and land-use variables were used in the analysis. The variables in the sociodemographic category 
are population, median age, employment levels, unemployment levels, and two binary variables related 
to income per capita and college student population (these variables were created after tests with the 
direct, untransformed variables were not successful). The income per capita dummy variable has a value 
of one if a cell’s income per capita is greater than $3,900, and zero otherwise. The $3,900 value is the 
median income for full-time dependent students in the academic year 2015-2016 (Radwin et al., 2018). 
The college student dummy variable equaled 1 if a cell’s student population represented more than 26.5% 
of the total population of a grid cell, and 0 otherwise. This percentage was determined by analyzing the 
number of students within the population of 50 college towns in the US. Five land-use variables, for five 
land-use types, were used in the regression analysis. The variables consisted of the building space 
(measured as floor area) dedicated to commercial, mixed-use, industrial, public, and UPRM land use 
categories. The public land use category includes schools, churches, and government buildings. Naturally, 
the UPRM land use category refers to buildings that are located within the UPRM campus. 

Models using linear, Poisson, zero-inflated Poisson, negative binomial, spatial lag, and spatial error 
regression methods were considered in the analysis. Spatial regression was used as it is an approach 
commonly used in the literature (e.g., Caspi et al., 2020). Poisson, zero-inflated Poisson, negative binomial 
models were estimated as these are standard models used in analyses with count data (Washington, 
Karlafti, & Mannering, 2011). The count models, including the negative binomial model, were estimated 
using the statsmodel library in Python (Seabold & Perktold, 2010) and the spatial regression models were 
estimated using the GeoDa software, a spatial data analysis tool (Anselin, Syabri, & Kho, 2006). For the 
spatial regression models, the first-order queen contiguity weight matrix was used. Ultimately, the results 
for the negative binomial and spatial error models are reported in the results section (Section 2.5.4). The 
negative binomial model was selected given that count data is being analyzed and overdispersion was 
detected using the test proposed by Cameron and Trivedi (2001). The spatial error model was selected 
over the spatial lag model given their relative measures of goodness-of-fit.   

2.4.3. Methods for Quantifying Spatial Access to Dockless E-scooters 
Spatial access to the MDES e-scooters was quantified from the perspective of the building centroids, with 
the centroids serving as a proxy for the location of people. Two spatial access indicators are proposed: 
average distance to the 𝐾-closest scooters and the area under the scaled cumulative relative frequency 
curve (AUC). In addition, the number of scooters per person is computed in this study based on node-level 
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measures. For this analysis, e-scooter locations were mapped to network nodes for each day and each 
period of the day (5-minute periods were used to discretize time in a day). The indicators were computed 
for each day, each period, and each node of interest in order to reflect that, in the context of dockless 
micromobility services, a neighborhood’s spatial access to the service varies as vehicles are used during 
the day. 

For each building centroid, and each day 𝑑 and period (e.g., 5-minute intervals), the average distance 
to the 𝐾-closest e-scooter was determined, where 𝐾 is a parameter set by the analyst. Computing this 
distance for a contiguous set of periods offers an indication of the travel cost incurred in reaching an e-
scooter. Distances between nodes were determined using Dijkstra’s shortest path algorithm.  

The scaled AUC indicator is proposed as a more general spatial access indicator that considers all the 
distances from a node to each e-scooter. The AUC indicator is the area under the cumulative frequency 
curve of the shortest path distances from a node (e.g., a building unit) to all e-scooters in the system. To 
illustrate the AUC concept, consider the example in Figure 5. Figure 5(a) presents the cumulative relative 
frequency curve of the distances from node 𝑒 to all e-scooters on day 𝑑 at period 𝑝. The AUC for node 𝑒’s 
curve (685.5) is greater than the AUC of node 𝑢’s convex-like curve (328.5; Figure 5(b)). In general, as a 
node’s cumulative frequency curve is more concave, more area will be under the curve, which in turn 
implies that the e-scooters are closer to the node; lower area values indicate that the fleet is generally 
farther from a node. Being overall closer to the fleet could imply greater chances of finding a parked e-scooter 
in the proximity of a location (i.e., more spatial access). The indicator is termed “scaled” as one could 
select an upper limit on the distances considered, scale all distances relative to this threshold, and discard 
all observations, if any, beyond the threshold (in this case, it is possible that the curve would not reach 
the 100% accumulation value). This procedure results in a unit area, and the value of the AUC would be 
bounded between 1 (100% of e-scooters located at 0 meters from the node) and 0 (no e-scooter located 
within the distance threshold).  

A common measure of spatial access to a system is the number of vehicles in a zone. Based on this 
idea, the last spatial access indicator is scooter density, defined here as the node-level number of e-
scooters per person. To compute a node-level density, a graph tree is constructed with all nodes within a 
threshold distance 𝑙 for the (root) node being analyzed (Figure 6). Then, the node’s scooter density is 
computed by dividing the total number of scooters in the nodes in its tree by the total population of the 
building centroids incident to the tree. This can be repeated for all nodes, days, and periods. This approach 
circumvents the boundary issues created by density measures computed at the zone level. To obtain zone-
level e-scooter densities, one could average the density values of the nodes contained by each zone.  
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Figure 5. Area under the relative cumulative frequency curve (AUC) for the e-scooters distances of node 𝒆 (a) and 

node 𝒖 (b) 

 
Figure 6. Tree constructed from a root node (𝒍 =375 meters) 

 

2.5. Results 
This section discusses the results of the analyses performed to understand the usage patterns of MDES, 
the regression analyses, and the spatial access analyses using the proposed indicators.  

2.5.1. Factors Associated with the Use of MDES and User Clusters  
The main characteristics of MDES users and nonusers are illustrated in Figure 7. Sixty-two percent of the 
female responders were nonusers, and 52% of the UPRM students indicated that they were users. As the 
age of the responder increases, the probability of being an MDES user decreases. On a question that 
allowed survey participants to select more than one option, users indicated that the three main reasons 
for using MDES were: travel time savings, avoidance of traffic congestion, and the lack of auto parking 
spaces (options selected by 58%, 37%, and 34% of responders, respectively). Note that the last two 
reasons suggest that MDES reduced auto trips for a section of the population. From the opposite 
perspective, the three main reasons given for not using or for using MDES less than desired were: the lack 
of space on the roads for e-scooters, trip costs, and unavailability of e-scooters where needed (options 
selected by 40%, 35%, and 23% of responders, respectively. In addition, 21% of responders also indicated 
that e-scooters were not safe. In terms of trip purpose, the survey revealed that the three main MDES trip 
purposes were: to attend classes, work, or visit a restaurant (options selected by 78%, 44%, and 43% of 
responders, respectively).  
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Table 2 presents the estimated coefficients for the logistic regression model. The model suggests that 
a person is less likely to use MDES if they have available a car or a bicycle, although the coefficients for 
these parameters are not significant at the 95% confidence level. The model also suggests that as a 
person’s age increases, they are less likely to use MDES. For example, relative to the 27-50 age group, 
persons in the 18-20 and 21-26 age groups are, respectively, five and two times more likely to be MDES 
users. With respect to gender, females are 1.7 times less likely to use MDES.  

 
Table 2 Coefficients and Odds-Ratios for Logistic Regression Model 

Variable  𝜷 p-value 
Odds-ratio 
(𝐞𝐱𝐩(𝜷) 

1/Odds-ratio 
(𝟏/𝐞𝐱𝐩(𝜷)) 

Intercept -0.32 0.52 - - 

Car Availability -0.55 0.08 0.57 1.74 

Bike Availability -0.37 0.20 0.69 1.45 

Age: 18-20 1.70 0.00 5.47 0.18 

Age: 21-26 0.93 0.02 2.53 0.39 

Age: ≥50  -1.35 0.06 0.26 3.86 

Female -0.55 0.02 0.58 1.73 
 

Number of observations: 371 
Pseudo R-squared: 0.12 
Log-likelihood: -223.10 
Log-likelihood ratio test p-value: <0.001 

 

 
Figure 7. User and nonuser representation within population groups based on survey responses  

 
In the clustering analysis, three clusters were identified using the dendrogram and selecting the 

number of clusters that maximize the distance metric across the different clusters. Table 3 reports the 
average value of the computed attributes of the members within each cluster. Users from cluster 1 are 
primarily users that made one or two trips during the period of analysis. They represent 46% of registered 
MDES users, 60% of whom used the system within the first three weeks of operations. The users in cluster 
2 performed, on average two trips per month, had a 30% probability of performing a second trip, and had 
an average time between trips of 208 hours. Cluster 3 corresponds to the high-frequency users, which 
represent 14% of users. The members of this cluster made around 65% of e-scooter trips. On average, 
they made 49 trips during the period of analysis and, if they made a trip, their probability of performing 
additional trips was 0.42, on average. 
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Table 3. Average User Travel Characteristics by Cluster Group 

Cluster 
 ID  

Percent of 
registered users 

Number  
of trips 

Average time 
between trips 

(hours) 

STD of time 
between trips 

(hours) 

Presence 
(days) 

Subsequent  
Trips Probability 

1 46 1.8 (1.1) 1128.0 (894) 6.5 (25.3) 5.3 (13.4) 0.00 (0.0) 

2 40 10.3 (6.4) 207.6 (194) 239.4 (202.1) 58.6 (33.3) 0.30 (0.2) 

3 14 49.2 (27.6) 62.1 (28.0) 88.1 (42.4) 102 (16.5) 0.42 (0.2) 

Note: Standard deviation in parenthesis; users that used the system once were assigned a value of 1800 hours for “average time 
between trips”, which represents the maximum feasible time in the period considered. 

2.5.2. Spatiotemporal Patterns of Trips in MDES 
As expected, MDES trips are mostly associated with UPRM and the neighborhoods in which students live. 
The regions with a high concentration of trip origins are identified in Figure 8. The illustrated density 
values were determined by kernel density estimation using the original start latitudes and longitudes of 
all trips. As can be seen, most trips start from the UPRM, Terrace, and Bosque zones; all other hotspots in 
the map are associated with student residences, except for a Centro zone hotspot that corresponds to the 
city’s main plaza, where the City Hall and major religious facilities are located. The origin-destination 
heatmap presented in Figure 9 confirms this observation: most trips start, end, or start and end in the 
university. Specifically, 35% of trips start and end at UPRM, 25% have the university only as its destination, 
and 18% have it only as its origin.  

The temporal patterns also suggest MDES dependence on the UPRM community. The boxplots in 
Figure 10 indicate that trip rates plummet during weekends when most students return to their 
hometowns (there are 87% fewer trips on weekends). On average, Wednesday is the day of the week with 
most trips. The MDES trip distribution by the time of day does not exhibit the standard peak-hour pattern 
observed in other modes. Based on the median distribution, the peak period during weekdays was 
observed between 8:00 AM and 1:00 PM (Figure 11 and Figure 12  plot the data of each type of day for 
the analysis period, in addition to the quartiles). On average, 50% of weekday trips are completed by 
noon. For weekends, a peak period is not observed (Figure 12) and 50% of trips are completed by 3:00 
PM. This analysis was performed using data from the August 3, 2019, to December 15, 2019, period. The 
demand for MDES reduces to close to zero when the university is not in session (in Figure 13, the period 
between the end of December and the end of January). The maximum number of trips was observed 
during the week of August 19-23, which coincides with the first week that e-scooters were given 
permission to operate inside the UPRM campus.   

 



 

 
 

  
 

17 

 
Figure 8. Density map of trip starts 

 
Figure 9. Origin-destination matrix of MDES trips 
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Figure 10. Total e-scooter trips by day of week 

 
Figure 11. Hourly trip frequency for weekdays 

 
Figure 12. Hourly trip frequency for weekends 
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Figure 13. Daily e-scooter trip count (August 2019 – March 2020) 

2.5.3. Indicators of Spatial Access  
In  
Figure 14 and  
Figure 15, the average minimum walking distance to an e-scooter (K=1) and to the ten closest e-scooter 
(K=10) is depicted for each node (only nodes connected to a building centroid considered) and each day 
for the period of analysis. Noticeable in both figures is the increase in the distance between a node and 
e-scooters during weekends and the December-January break (and earthquake period) due to the 
reduction of the available fleet in those periods, which in turn responds to the lower demand for the 
service. The exceptions to this observation are the Bosque, Centro, and París zones, as these zones have 
businesses next to which the operator placed e-scooters even when UPRM was not in session. But note 
that within the nodes of each zone there is variability, particularly for relatively large zones that contain 
a large number of nodes (e.g., there are 800 nodes in UPRM versus the seven, closely located nodes in 
Plaza. On average, nodes in the Bosque neighborhood have the lowest minimum walking distance to the 
ten closest e-scooters (378±171 meters), while nodes in the Playa zone have the largest walking 
distance (1388±635 meters). Note that the color contrast between  
Figure 14 and  
Figure 15 communicates information that could be of interest to planners. For instance, observing the 
Terrace heatmap, a marked contrast can be observed in the average minimum and 10-minimum distances 
on the weekends (see bright bands that appear in  
Figure 15), which indicates a general scarcity of scooters in that zone; again, this scarcity reflects the 
relatively few students in Terrace during weekends. There are zones (e.g., UPRM and Terrace) for which 
four regimes can be observed: the periods prior to MDES access to UPRM, the fall semester, the winter 
break and earthquake event, and finally the late start of the spring semester. 

 Relative to the previous figures, the heatmap depiction of the AUC values in Figure 16 provides a 
similar, yet more general picture of a node’s proximity to the scooter fleet. In this analysis, the scaling 
factor was set to 2,000 meters. The Bosque and París nodes have similar AUC patterns, as well as the 
highest values (0.58±0.14 and 0.55±0.10, respectively). Also noteworthy is the Norte zone, which has a 
relatively high and constant AUC value (0.55±0.08), probably due to the central location of this zone. 
Once again, the Playa zone has the worse indicator (AUC value of 0.21±0.16). The AUC indicator can be 
used to examine the patterns at the node level by time of day, as illustrated in Figure 17. In this example, 
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the AUC values for the most significant UPRM destination node, the most significant Bosque origin nodes, 
and a Playa node are depicted in Figure 17 (a), (b), and (c), respectively. This figure was generated by 
plotting the three nodes’ weekday data for the period of August 3, 2019, to December 15, 2019. A two-
peak curve is observed for Figure 17(a), which is likely related to student’s class schedules in that UPRM 
region, while the curve in Figure 17(b) shows how the fleet is closest to that node in the morning (the 
operator places e-scooters there at the start of the day), and it relatively disperses from it as the day 
progresses. Figure 17(c) suggests that the e-scooter fleet is generally far from the Playa node, and it gets 
farther from the node as the day progresses.  

 

 
Figure 14. Average minimum walking distance (meters) to an e-scooter for each node and each day 

 
Figure 15. Average walking distance (meters) to the 10 closest e-scooters for each node and each day 
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Figure 16. Average AUC value for each node and each day 

 
Figure 17. AUC values by time of day for selected nodes  

 
Figure 18 shows the average daily e-scooter per 100 people (density) for each zone during the period 

of interest. The plots in this figure represent the median density value for network nodes connected linked 
to centroids of residential buildings (the UPRM and Playa zones were removed from this analysis given 
their lack of residential buildings). The 𝑙 parameter was set to 187.5 meters (corresponding to a 2.5-minute 
walk). The Norte and Bosque zones had the highest average e-scooter densities (1.19±1.55 and 
1.04±0.64). The Norte zone has a relatively low population (70 people), yet a relatively high number of e-
scooters were located in it as it has sidewalks with significant pedestrian activity, it is close to a UPRM 
pedestrian entry point, and it contained several business establishments. The zones with the lowest e-
scooters densities are Trastalleres and Playa, with densities approaching zero.   

 



 

 
 

  
 

22 

 
Figure 18 Average daily e-scooters per person for each zone 

2.5.4. Regression Analysis of Trip Generation, Sociodemographic, and Land Use Variables 
The results from the negative binomial regression models are reported in Table 4. For both dependent 
variables, all independent variables are significant except for employment and public land use. The results 
for the sociodemographic variables suggest that the population, income dummy, and college student 
dummy variables are positively associated with e-scooter trips for both dependent variables. The positive 
correlation between the income variable and trip activity highlights the possible difficulties that low-income 
residents of Mayagüez may have in accessing the e-scooter system. Median age and unemployment have 
negative coefficients, suggesting older and unemployed people could have less access. The positive 
coefficient for the college student dummy suggests that, as in previous studies, university students are 
major users, in relative terms, of micromobility services. These results also align with the results obtained 
in the online survey and spatiotemporal analyses presented in the previous sections.  

For the land-use variables, the models suggest that commercial, mixed, and UPRM land uses have a 
positive association with both the number of departures and arrivals in a cell. In contrast, industrial land 
use is negatively associated with e-scooter trip activity. Among the land-use variables, the coefficients 
with the highest magnitudes are the ones for mixed and UPRM land uses. These results agree with 
previous studies that show a positive correlation between micromobility trip generation and mixed and 
university land uses. As most mixed-use buildings are in densely student-populated neighborhoods such 
as Terrace, Pueblo, and París, the results also support the observations made in the previous sections.   

In Table 5 the results for the spatial error models are reported. In contrast to the negative binomial 
model, in this model, only the population, mixed land use, and UPRM land-use variables are statistically 
significant at the 95% confidence level for the trip departures models. For the trip arrival model, only the 
mixed land use and UPRM land-use variables are statistically significant (at the 95% and 90% confidence 
level, respectively). The lambda is the spatial autoregressive coefficient, which is positive and significant 
for both models.  

The negative binomial and spatial error model results differ on which variables are significantly related 
to trip generation in MDES. This is unsurprising given the differences in model structure and their 
underlying assumptions. For example, the spatial error model accounts for spatial dependence (through 
the error terms) among observations, whereas spatial dependence structures are not part of the negative 
binomial model. However, the negative binomial regression model is used for count data, whereas the 
spatial error model was not designed as a count data model. In any case, both types of models confirm 
that the principal factor driving demand for MDES is UPRM and its students. 



 

 
 

  
 

23 

 
 
 
 
 

 
Table 4. Negative Binomial Regression Models for Trip Generation in MDES 

Variables Trip Departures Model Trip Arrival Model 
Coefficient  p Value Coefficient  p Value 

Constant 4.685 0.000 4.876 0.000 
Population (people) 0.010 0.000 0.007 0.000 
Median Age (years) -0.123 0.000 -0.091 0.000 
Employment (job/km2) 0.493 0.205† 0.127 0.728† 
Unemployment (%) -0.045 0.006 -0.072 0.000 
Income Dummy 1.894 0.000 1.295 0.000 
Student Dummy 2.176 0.000 1.747 0.000 
Commercial LU (km2) 95.497 0.020 81.630 0.036 
Mixed LU (km2) 292.363 0.000 250.958 0.000 
UPRM LU (km2) 234.381 0.000 223.507 0.000 
Industrial LU (km2) -163.478 0.004 -99.072 0.055† 
Public LU (km2) -81.435 0.173† -49.732 0.381† 

Number of observations: 350 Log-likelihood: -1743.9 
𝜒2  statistic: 1090 (p-value: <0.001) 

Log-likelihood: -1810 
𝜒2  statistic: 775 (p-value: <0.001) 

Note: LU stands for land use. † 𝑝 > 0.05. 

 
 
Table 5. Spatial Error Models Regression Models for Trip Generation in MDES 

Variables Trip Departures Model Trip Arrival Model 
Coefficient  p Value Coefficient  p Value 

Constant  120.1 0.053 147.7 0.016 
Population (people) 1.344 0.048* 0.856 0.155 
Median Age (years) -1.580 0.733 -1.412 0.737 
Employment (job/km2) 0.783 0.996 1.152 0.993 
Unemployment (%) 0.558 0.934 -0.843 0.892 
Income Dummy -56.810 0.616 -28.9 0.779 
Student Dummy 72.306 0.368 33.4 0.644 
Commercial LU (km2) -4236.1 0.725 -1308.8 0.901 
Mixed LU (km2) 45512.7 0.003** 24254.0 0.071* 
UPRM LU (km2) 25824.1 0.004** 21132.8 0.007** 
Industrial LU (km2) -4031.6 0.805 -5726.4 0.690 
Public LU (km2) 5827.2 0.765 451.3 0.979 
Lambda 0.592 0.000 0.661 0.000 
Number of observations: 350 Pseudo R-squared: 0.361 

Log-likelihood: -2578 
Log-likelihood ratio test: 41.57 

Pseudo R-squared: 0.429 
Log-likelihood: -2535 
Log-likelihood ratio test: 57.20 

Note: LU stands for land use. * 𝑝 < 0.1. **𝑝 < 0.01. 
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2.6. Discussion 
The MDES user characteristics and usage patterns are similar to those discussed in the reviewed literature: 
users tend to be young, male, and relatively young; most trips occur on weekdays, and within the day 
there are no evident peak hours, and the main driver behind the generated trips are activities in a 
university. Perhaps not as common is the drastic drop of e-scooter trip demand when there are no classes 
at UPRM, particularly during the weekends, which suggest that the floating population of students, rather 
than permanent residents, are the users of the system. The analysis of trip arrivals and departures and 
the computed spatial access indicators shows an inequitable spatial distribution of e-scooters among 
neighborhoods in the MDES service area. There are probably several obvious reasons why e-scooter trips 
were mainly made by students and were concentrated in UPRM and its adjacent neighborhoods. 
Reasonable candidate explanations include that: 

i. the operator primarily located e-scooters in and around UPRM, 
ii. a significant proportion of Mayagüez residents face economic and age-related health barriers 

that impede their participation in the system,  
iii. permanent residents in the study region perform activities (e.g., work, groceries) outside the 

study region and, therefore, have little use for the system, and 
iv. there are fewer students and visitors in the MDES service area during the weekends, and 

therefore there is a low demand for the system, given that the Pueblo borough has relatively 
few attractive activities during the weekends (as previously mentioned, outside a few 
restaurants, most establishments, and offices in Pueblo are closed during the weekend).  

The spatial equity analysis performed in this study would need to be complemented by a vertical equity 
analysis to provide a definitive explanation of the underlying causes driving the differences in e-scooter 
spatial distribution. It is reasonable to expect that, beyond the age and gender differences observed in 
this study, there are important social group factors that affect the observed e-scooter travel patterns. 
Chief among these are the markedly different income levels among neighborhoods in the service region 
(which is not clearly reflected in the available Census data). Income differences are not only associated 
with the amount of money that people allocate for travel, but they are also associated with access to the 
cashless means of payment that the MDES accepts.  

Another noteworthy result of this study is the observation that MDES might be reducing the auto trips 
of a proportion of its users. As indicated by survey respondents, among the main reasons for the use of 
MDES are the lack of parking spaces in UPRM and the traffic congestion in the region. This suggests that 
MDES could have a positive impact on the congestion in the study area, but the magnitude of this impact 
is unclear. Further study is necessary to explore the potential impact of MDES on traffic congestion in the 
study region. The level of demand for the system and the impact that MDES could have on traffic 
congestion is probably negatively impacted by Mayagüez’s built environment. The sidewalks and local 
streets in Mayagüez are relatively narrow, the street space is mostly occupied by moving or parked motor 
vehicles, pavements are not in good condition, and there is close to zero infrastructure dedicated to 
bicycle and e-scooter users. This in turn creates the safety concerns identified in the online survey. As the 
reviewed literature suggests, and it would be reasonable to expect, creating space in the built 
environment for non-auto modes could improve MDES demand and the demand for bicycling, reduce 
congestion, and potentially enhance equity and access. 

A possible limitation of the analysis of the online survey, including the logistic regression model, is the 
possibility it suffers from sampling biases. The survey activities in this project were affected by the COVID-
19 crisis. The crisis prevented on-the-field observations and interviews as MDES paused operations and 
in-person classes and research were suspended at UPRM. This situation hindered plans for a more 
controlled approach to the selection of survey participants (essentially, opportunity sampling was used 
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given the changes in research activities). Given that the survey was distributed using webtools (e.g., UPRM 
email service), self-selection bias could arise if, for example, people interested in MDES were more likely 
to participate, while those not interested in the service ignored the survey. Also, sampling bias could be 
introduced, for example, by the lack of participation from people who do not check their emails frequently 
and never saw the survey announcements. The results of the online survey analysis, however, align with 
the results from a 2019 pilot study in which field observations and interviews were made, so the survey 
provides information that is consistent with other observations. 

2.7. Closing Remarks 
 
The first shared micromobility service in Puerto Rico started operations in the Municipality of Mayagüez 
in August 2019. It is operated by a local micromobility startup, which has expanded operations to four 
cities in PR. Given the public transportation options in PR, it is conceivable that micromobility services 
could help reduce short auto trips in the markets in which they operate, and consequently help reduce 
traffic congestion.  

The MDES experience would suggest that the benefits of micromobility services in PR are likely to be 
distributed inequitably, particularly in areas, like Mayagüez, in which the local population has, on average, 
low-income levels. However, more research is required to determine how transferable the MDES 
experience is in PR and elsewhere. A key area of research is the impact of the built environment on 
micromobility demand in an auto-centric society that lacks access to reliable public transportation 
alternatives.  

In this chapter methods, for generating network-based spatial access indicators were proposed and 
applied in the MDES case. The proposed method can be used to analyze, at a granular node level, equity 
in spatial access of micromobility systems. As will be shown in the next chapter, the proposed indicators 
can also be used as part of rebalancing procedures that account for equity objectives. 
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3. Vehicle Rebalancing to Improve Equity in Access to 
Dockless Micromobility Systems 

 
One of the main challenges in micromobility services is the concentration of vehicles in suboptimal 
locations, which is why rebalancing operations are necessary. From the perspective of operators, a vehicle 
distribution of vehicles can be suboptimal if it results in, for example, fewer trips than possible. From a 
societal perspective, however, a vehicle distribution can be considered suboptimal if it largely excludes 
disadvantaged communities. These equity concerns have been reflected in city-wide rebalancing 
requirements, as mentioned in Chapter 1. 

In this chapter, a two-step model is proposed that can be used to account for equity objectives in the 
rebalancing operations of dockless micromobility services. The proposed approach incorporates 
optimization models to define target vehicle distributions according to efficiency (e.g., number of trips) 
and equity (e.g., accessibility) performance objectives. Equity in access indicators, both from a spatial and 
social equity perspective, are proposed as objective functions in the decision-making process. These target 
distributions are then used as inputs in a multi-objective pick-up and delivery problem (PDP) whose 
solution defines the vehicle relocation plan. In addition to model formulations, a heuristic based on the 
differential evolution algorithm is presented to solve the proposed problems. Numerical examples are 
presented to illustrate the application of the proposed methods. 

This chapter is organized as follows. Previous rebalancing models for station-based and dockless 
systems are reviewed next, followed by a discussion of the proposed optimization models and solution 
methods. In Section 3.3, the application of the proposed model is illustrated using travel simulation 
models. In the last section, future research directions are discussed.   

3.1. Literature Review on Rebalancing Models 
 
Two types of vehicle rebalancing (relocation) strategies are considered in the literature: the customer 
incentives approach and the operator-based approach. In the first approach, users are incentivized to 
relocate vehicles to selected locations, while in the operator-based approach the relocation process is 
performed by service staff. PDPs are often used to developed models for operator-based rebalancing 
methods. The operator-based rebalancing operations can be further categorized as either dynamic or 
static (Chemla et al., 2013). Static rebalancing refers to rebalancing that occurs before or after the service 
is in operations or when there is low demand, while dynamic rebalancing is performed during the 
operation hours when the status of the system is rapidly changing. Shui and Szeto (2020) present a review 
of bicycle-sharing service planning problems that defines key terms and modeling approaches directly 
relevant to rebalancing problems.  

3.1.1. Rebalancing Models for Station-based Micromobility Services 
Benchimol et al. (2011) and Chemla et al. (2013) presented single-vehicle PDPs without time constraints 
that sought to minimize the total vehicle travel distance required to complete a rebalancing plan.  Chemla 
et al. (2013) presented a branch-and-cut algorithm for solving such a problem, from which a feasible 
solution was obtained via a tabu search. Both papers assumed a known target inventory level for each 
station in the system. Raviv and Kolka (2013) and Regue and Recker (2014) developed a Markov chain 
formulation to define the minimum and maximum inventory level as an input for a bike-sharing 
repositioning plan. Raviv and Kolka (2013) proposed a proactive rebalancing approach, instead of a 
reactive one. Intended to prevent the occurrence of inefficient system states. They developed a 
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framework to solve the dynamic bike-sharing repositioning problem by integrating four models: a demand 
forecasting model, a station inventory model, a redistribution needs model, and a vehicle routing model. 
Similar modeling approaches are observed in models that extend these works (e.g., Zhang et al. 2017, 
Schuijbroek et al. 2017). 

3.1.2. Rebalancing Models for Dockless Micromobility Services 
Naturally, rebalancing models for dockless (also known as free-floating or stationless) services differ from 
those proposed for station-based services, in part because station capacity constraints are not a problem. 
Liu and Xu (2018) proposed an optimization-based model that considered clustering analysis to solve the 
rebalancing problem for dockless bikes-haring services. Similarly, Caggiani et al. (2018) proposed a 
framework that uses spatiotemporal clustering as part of a demand forecasting methodology. The 
proposed framework had the objective of maximizing user satisfaction and minimizing the number of lost 
users. Additionally, Barabonkov et al. (2020) presented a mixed integer programming problem for 
rebalancing operations in dockless bike-sharing systems. The objective of their model was to minimize 
lost profit, which was computed as a function of lost demand; the proposed methodology also required a 
model to forecast demand levels. From the customer incentives perspective, Pan et al. (2019) proposed a 
deep reinforcement learning framework for incentivizing users to rebalance dockless systems. 

3.1.3. Equity and Optimization-based Models in Transportation  
An extensive number of models have been proposed to plan and operate transportation systems 
considering equity objectives. These include equity-related models for road pricing (Levinson, 2010), bus 
service design (e.g., Ferguson et al., 2012),  road network design (Caggiani, Camporeale, & Ottomanelli, 
2017), and traffic signal control (Han, Liu, Gayah, Friesz, & Yao, 2015), to name a few. In the context of 
micromobility, Caggiani et al. (2020) proposed an optimization-based approach to determine the number 
and layout of bike stations and their respective racks to minimize the implementation and operation cost, 
and they included spatial equity constraints to control for the relative number of bicycles and walking 
times between zones. Caggiani et al. (2020b) extended this work, in part, by considering the presence of 
multiple modes. The model’s objective was the minimization of accessibility inequalities as computed by 
the Theil inequality index. 

3.2. Rebalancing Model  
 
A model is proposed to rebalance vehicles in dockless micromobility systems according to efficiency and 
equity objectives. The following assumptions are made in the proposed model:  

i. The rebalancing model is invoked to generate vehicle pickup and drop-off recommendations 
(i.e., the rebalancing plan) only during periods 𝑡 ∈ 𝑻.   

ii. Models are available to predict the micromobility system performance for a given time 
horizon (see Appendix B).  

iii. Models are available to estimate the probability that a person rents a micromobility vehicle.  
The proposed methodology consists of two steps that are executed in each period 𝑡 ∈ 𝑻: 

 
Step 1. Define target vehicle distributions: In this step, optimization modes are used to determine 
the vehicle distributions that maximize system performance metrics for a given time horizon. The 
optimization model used in this step is called the target distribution problem. 

 
Step 2. Define vehicle pickup and delivery locations. With the target distributions as inputs, a PDP is 
used to define the vehicle pickup and delivery locations and quantities.    
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As explained in the next subsections, both the target distribution problem and the PDP can be used 

to reflect system efficiency and equity considerations in the development of rebalancing plans.  

3.2.1. Target Distribution Problem 
The target distribution problem (TDP) is proposed to identify, for a given period, vehicle distributions that 
result in optimal system performance in a future time horizon (e.g., next two hours). For each period 𝑡 ∈
𝑻, the target distribution problem (TDP) assumes that prediction models can be used to forecast the 
performance of the system as a function of the vehicle distribution 𝒔𝑡 and of complementary information 
contained in 𝚲𝑧,𝑡 (e.g., system activity patterns in previous periods, weather, day of the week, time-of-
day). Let 𝐹𝑧  be a model that predicts the system’s performance according to objective 𝑧, 𝑱 be the set of all 
locations (e.g., zones, neighborhoods, regions) in the service area,  𝑠𝑗  be the number of scooters in zone 𝑗 

(𝑗 ∈ 𝑱, 𝑠𝑗 ∈ 𝒔), and ℎ be the size of the vehicle fleet. Then, the target distribution is determined by finding 

a solution to:  

max 𝐹𝑧(𝒔, 𝚲𝑧,𝑡) 
 

 
(1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

  

∑ 𝑠𝑗 = ℎ

𝑗∈𝑱

  
(1.1) 

𝑠𝑗 ∈ ℤ+ ∪ {0} ∀𝑗 ∈ 𝑱 (1.2) 

 
Constraint (1.1) ensures that the selected target distribution adds to the available vehicle fleet size, 

while constraints (1.2) are the integrality constraints. Note that the dimensions of 𝒔 are 1 × |𝑱|. In the 
context of this project, the TDP would have to be solved at least twice to separately identify the target 
distributions for the efficiency and equity objectives. Consequently, for each objective, a separate 

𝐹𝑧(𝒔, 𝚲𝑧,𝑡) model would have to be used. Previous studies have developed modeling approaches that can 

be applied to predict efficiency-related objectives, such as the total number of trips in the system (see 
Appendix B for a review of machine learning approaches to forecasting demand). In the following 
subsection, two approaches are presented to define equity performance metrics and objectives for the 
rebalancing operations of dockless micromobility services. In appendix C, a heuristic to find solutions to 
the TDP is proposed.  

3.2.1.1. Specification of Equity Performance Metrics and Objective Functions 
As discussed in Section 2.1.1, the term equity can be understood from multiple perspectives. In the 
proposed rebalancing model, equity is quantified using an indicator that reflects the inequalities in the 
distribution of opportunities to access the system. That is, equity is examined in terms of opportunities to 
access the service of interest. Let 𝐴𝑡 be the inequality indicator for the system at period 𝑡 and 𝑎𝑡𝑢 be a 
proxy that captures the opportunity to access the system for entity 𝑢 ∈ 𝑼 at period 𝑡. 𝐴𝑡 reflects the 
inequalities in the distribution of the 𝑎𝑡𝑢 values in the entities of interest.  

Two measures are proposed to define 𝑎𝑡𝑢. The first measure (𝑎𝑢𝑡;𝑙) is defined as the AUC indicator 
proposed in Section 2.4.3. As previously discussed, this indicator defines the proximity of a vehicle fleet 
to a node as the area under the cumulative relative frequency curve of the shortest path distances from 
the node to all vehicles in the network. Therefore, 𝑎𝑢𝑡;𝑙 depends on a network representation of 

transportation infrastructure (e.g., sidewalks, roadways) and land uses. The entities of interest for 𝑎𝑢𝑡;𝑙  
are building units (e.g., commercial establishments, apartment units) that are represented as nodes in a 
network.  



 

 
 

  
 

29 

The second measure (𝑎𝑢𝑡;𝐾) is developed from the social equity perspective. 𝑎𝑢𝑡;𝐾 is computed for 
each person in a sample of the population as a function of the person’s attributes. The attributes are 
captured in an estimate of each individual’s probability of selecting a micromobility service. Let 𝑤𝑗𝑡 be the 

number of vehicles in zone 𝑗 at time 𝑡 per the expected demand for those vehicles and 𝑝𝑘𝑖𝑗𝑡 be the 

probability that a person 𝑢 in zone 𝑖 (𝑖 ∈ 𝑱) uses a vehicle in zone 𝑗 and period 𝑡. Then the person-level 
measure of access is: 

 

𝑎𝑢𝑡;𝐾  = ∑ 𝑝𝑢𝑖𝑗𝑡𝑤𝑗𝑡

𝑗∈𝐽

  
(2) 

 
This measure is analogous to the cumulative opportunity measures discussed by Kwan (1998). The 

𝑤𝑗𝑡 term reflects the relative opportunities that person 𝑢 has for using the service and the 𝑝𝑢𝑖𝑗𝑡 term 

(which ranges from zero to one) reflects how accessible those opportunities are to the person. The 𝑤𝑗𝑡 

term could be directly tied to the probabilities of use as follows:  
 

𝑤𝑗𝑡  =
𝑠𝑗𝑡

∑ ∑ 𝑝𝑔𝑖𝑗𝑡𝑖∈𝑱𝑔∈𝑼
  

(3) 

 
where the denominator is the expected demand for the scooters at zone 𝑗 at period 𝑡. As stated in 
assumption (iii), here it is assumed that models exist (e.g., logit models) to compute mode choice 
probabilities. 

In practice, computing the spatial access measure 𝑎𝑢𝑡;𝑙  is inexpensive, both in terms of data 
requirements and computational resources. The social access measure 𝑎𝑢𝑡;𝐾, however, might require new 
data-sharing paradigms in micromobility services. For example, an operator could create an equity-
oriented program in which individuals voluntarily participate by sharing data (e.g., real-time location for 
a period, but also limited sociodemographic characteristics), and this information is used to guide 
rebalancing so that vehicles are distributed considering each person’s 𝑎𝑢𝑡;𝐾 . 

 Given the selected access measure, the inequality indicator that aggregates this information can 
be computed. Several inequality indicators can be found in the literature (e.g., see Ramjerdi, 2006). Here, 
the Atkinson index of inequality is selected for the simulation tests discussed in Section 3.3. In the current 
context, the index is defined as:  

 

𝐴𝑡 = 1 − [
1

|𝑼|
∑ (

𝑎𝑡𝑢

𝑎�̅�
)

1−𝜀

𝑢∈𝑼

]

1
1−𝜀

 

 

(4) 

 
where 휀 is an inequality aversion parameter that can range from zero to infinity, but typically it is set to a 
value of 0.25 to 2 (excluding 1 for the given expression), with larger values indicating that more 
importance is given to the transfer of the access measure at the lower end of the distribution (Levy, 
Chemerynski, & Tuchmann, 2006). The Atkinson index value ranges from zero, representing perfect 
equality, to one, representing the opposite. Therefore, the performance indicator (alternatively, the 
equity objective) based on this indicator would have to be defined as 𝐹𝐴𝑡

= − 𝐴𝑡 in model (1) (as the 

analyst is interested in minimizing 𝐴𝑡, and model (1) is a maximization problem). The Atkinson index was 
selected as it has several attractive features, including that it satisfies the Pigou–Dalton transfer principle 
and it is subgroup decomposable (Levy et al., 2006). However, note that the proposed methodology is 
flexible in that it does not depend on which index is selected. 
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3.2.1.2. Considering Congestion Reduction Objectives in the Target Distribution Problem  
Given the models that compute the mode choice probabilities of individuals, a natural approach to 
considering a traffic congestion objective in the TDP is to define a function that captures the number of 
auto trips given the micromobility vehicle distribution. Let 𝑞𝑢𝑡(𝒔𝑡 , 𝚲𝑢𝑡) be the probability of performing 
an auto trip for person 𝑢 at period 𝑡 characterized by the information in 𝚲𝑢𝑡, and let 𝑼𝑞 ∈ 𝑼 be the set 

of auto users in the system. Then, the congestion reduction performance metric 𝐹𝑞 can be defined as:  

𝐹𝑞 = − ∑ 𝑞𝑢𝑡(𝒔𝑡 , 𝚲𝑢𝑡)

𝑢∈𝑼𝑞

  
(5) 

 

3.2.2. Minimum Level-of-Service Constraints 
The TPD assumes that a system-wide minimization of inequity can be pursued by achieving a system state 
(i.e., vehicle distribution) that results in a reduction of an inequality index during a given time horizon. In 
practice, government actors have established simpler equity requirements for micromobility companies, 
including spatial distribution standards that must be achieved during vehicle relocation operations 
(Hirsch, Stratton-Rayner, et al., 2019). Generally, these types of requirements can be included in 
optimization models as level-of-service constraints. For example, in the PDP discussed in the next section, 
a constraint is included to ensure that a given set of zones (e.g., neighborhoods) has a minimum number 
of vehicles at the end of the rebalancing operations. More complex constraints could be included to 
achieve more specific or local level-of-service standards. From a network perspective, the model 
constraints can be formulated so that the generated rebalancing plan satisfies requirements related to, 
for example, the: 

• minimum pedestrian travel times from a set of nodes to their respective 𝐾 closest vehicles,  

• service area coverage implied by the vehicle distribution and pedestrian travel time, or 

• average values of an access measure in previous periods of a day. 
More complex constraints could mean a harder-to-solve optimization problem, which in turn would 

require the development of heuristics that enable the practical application of the proposed model.  

3.2.3. Pickup and Delivery Model  
The target vehicle distributions generated via the TDP serve as parameters of the PDP.  Let 𝝀 and 𝝁 be the 
target vehicle distributions according to the efficiency and equity objectives, respectively. Given that the 
𝝀 and 𝝁 distributions are likely to be different and that there is a fixed number of vehicles in the system, 
the goal of the PDP is to produce a rebalancing plan that satisfies both the efficiency and equity targets 
to some degree. If a target is not met in a zone 𝑖 (i.e., if 𝜆𝑖 − 𝑠𝑖 > 0 for the efficiency objective or 𝜇𝑖 −
𝑠𝑖 > 0 for the equity objective), then there is a vehicle deficit in the zone, and the PDP attempts to 
minimize this deficit.  

The objective of the proposed PDP is to minimize the weighted sum of the zone-level vehicle deficits, 
relative to the 𝝀 and 𝝁 distributions, and the transportation costs that result from the rebalancing 
operations. The proposed PDP also includes a constraint that ensures that a minimum number of vehicles 
is present in selected zones, which guarantees a minimum level of service. Next, the model notation and 
formulation are presented and discussed. For simplicity, a single rebalancing vehicle (hereafter, truck) is 
assumed to be available to execute the PDP’s rebalancing plan (as in the MDES operations). Note that the 
main ideas behind the PDP do not depend on the number of trucks available for the rebalancing operation. 
Some of the notation in Schuijbroek et al. (2017) is adopted here.  
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Sets 
 

𝑱 : set of zones 
 

Parameters: 
 

𝑠𝑖 : number of vehicles in zone 𝑖 ∈ 𝑱 
𝑘 : truck capacity 
𝜆𝑖 : target number of vehicles for zone 𝑖 ∈ 𝑱 according to the efficiency objective 
𝜇𝑖 : target number of vehicles for zone 𝑖 ∈ 𝑱 according to the equity objective 
𝑐𝑖𝑗  : cost of travel from zones 𝑖 to 𝑗 

𝑚𝑖 : minimum number of vehicles that must be present in zone 𝑖 according to equity or 
efficiency considerations 

𝜔𝑧  : weight given to objective 𝑧 (𝑧 = (1,2,3), with 1 referring to the transportation cost 
component, 2 to the efficiency objective, and 3 to the equity objective) 

 
Variables:  
 

𝑥𝑖𝑗  : 1 if the truck goes from zones 𝑖 to 𝑗; 0 otherwise 

𝑦𝑖𝑗 : number of micromobility vehicles moved from zones 𝑖 to 𝑗 

𝑛𝑖𝑧  : vehicle deficits in zone 𝑖 based on objective 𝑧 
 

Objective Function: 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝜔1 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑱𝑖∈𝑱

+ 𝜔2 ∑ 𝑛𝑖2

𝑖∈𝑱

+ 𝜔3 ∑ 𝑛𝑖3

𝑖∈𝑱

 (6) 

 
Constraints: 

∑ 𝑥0𝑗

𝑗∈𝑱

= 1  
(6.1) 

∑ 𝑥𝑖0

𝑖∈𝑱

= 1  
(6.2) 

∑ 𝑥𝑖𝑟

𝑖∈𝑱

− ∑ 𝑥𝑟𝑗

𝑗∈𝑱

= 0 ∀𝑟 ∈ 𝑱 (6.3) 

∑ 𝑥𝑖𝑖

𝑖∈𝑱

= 0 ∀𝑖 ∈ 𝑱 (6.4) 

𝑘𝑥𝑖𝑗 ≥ 𝑦𝑖𝑗  ∀𝑖, 𝑗 ∈ 𝑱 (6.5) 

𝑠𝑖 + ∑ 𝑦𝑗𝑖

𝑗∈𝑱

≥ ∑ 𝑦𝑖𝑗

𝑗∈𝑱

 ∀𝑖 ∈ 𝑱 (6.6) 

𝑠𝑖 + ∑ 𝑦𝑗𝑖

𝑗∈𝑱

− ∑ 𝑦𝑖𝑗

𝑗∈𝑱

≥ 𝑚𝑖 ∀𝑖 ∈ 𝑱 (6.7) 

𝑛𝑖2 ≥ 𝜆𝑖 − (𝑠𝑖 + ∑(𝑦𝑗𝑖 − 𝑦𝑖𝑗)

𝑗∈𝑱

) ∀𝑖 ∈ 𝑱 (6.8) 
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𝑛𝑖3 ≥ 𝜇𝑖 − (𝑠𝑖 + ∑(𝑦𝑗𝑖 − 𝑦𝑖𝑗)

𝑗∈𝑱

) ∀𝑖 ∈ 𝑱 (6.9) 

𝑦0𝑗 = 0 ∀𝑖 ∈ 𝑱 (6.10) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑱 (6.11) 

𝑛𝑖2, 𝑛𝑖3, 𝑦𝑖𝑗 ∈ ℤ+ ∪ {0} ∀𝑖, 𝑗 ∈ 𝑱 (6.12) 

 
Objective function (6) minimizes the costs associated with the truck routing and deficits resulting from 

not meeting the target distributions. Constraint (6.1) and (6.2) ensure that the truck starts and ends in 
zone 0 (the depot or parking zone). Constraints (6.3) ensure flow conservation. Constraints (6.4) prevent 
dwelling or loops in the same zone. Constraints (6.5) ensure that pickups and drop-offs only occur when 
leaving or arriving at a zone and that the number of vehicles moved does not exceed the truck capacity. 
Constraints (6.6) ensure that the vehicle does not pick up more than the number of vehicles in each zone 
and they prevent negative inventory. Constraints (6.7) ensure that a given vehicle supply 𝑚𝑖 is available 
in each zone 𝑖 (𝑚𝑖 ≥ 0), which, as previously mentioned, is an alternative approach to capture equity 
considerations. Constraints (6.8) and (6.9) give the deficit value at the end of the route based on the 
respective targets. These constraints consider the zones’ initial vehicle supply, the vehicle movements in 
and out to the zones, and the target levels. Constraint (6.10) blocks the flow of vehicles from the depot. 
Finally, constraints (6.11) and (6.12) define the characteristics of the decision variables. 

The 𝜔𝑧  weights can be defined using different analysis perspectives. For example, the transportation 
costs and the efficiency deficit terms could be combined into a measure of loss of profit. Or the problem 
could be solved with different sets of weights and the rebalancing decision would be made based on the 
different rebalancing plans generated (the feasibility of this idea would depend on the computational cost 
of solving a single PDP instance).   

3.3. Numerical Experiments   
 
Two sets of experiments were conducted to illustrate the application of the proposed models. In the first 
set of tests, the outputs of the PDP were examined, and in the second set of tests, the two-step 
methodology was incorporated in a simulation of e-scooter demand in MDES. In both sets of tests, OR-
Tools, and specifically the CBC solver, were used to solve the PDP (Perron & Furnon, 2019).  

3.3.1. PDP Tests  
In the PDP tests, it was assumed that the service of interest operates in a 20-zone service area, the vehicle 
fleet has a size of 220, the service truck could carry up to 10 vehicles, and the minimum number of vehicles 
𝑚𝑖 for each zone was set to 60% of their 𝜆𝑖 values. Details on the scenario considered in the PDP 
experiments, including the number of scooters in the zones and the 𝜆𝑖 and 𝜇𝑖values used, can be found 
in Appendix D. The PDP was solved ten times, each time using a different set of weights. In all trials, 𝜔1 
was set to zero; 𝜔2 sequentially varied from 0 to 1 with increments of 0.1, and 𝜔3 was defined as 1 − 𝜔2. 
This trial configuration was used to focus on the tradeoffs between the efficiency and equity objectives. 
Figure 19 reports the results of the PDP tests. In the experiments, as more weight is given to the equity 
objective, the predicted deficit from the efficiency perspective increases, and vice versa. Extreme deficits 
are observed when either 𝜔2 or 𝜔3 equal 1, but interestingly the deficit values cluster for all other weight 
sets, with the efficiency deficit being lower in 90% of cases given the definition of the 𝑚𝑖 terms; had 𝑚𝑖 
been defined based on the 𝜇𝑖 values the opposite would have been true. Naturally, this is not a 
generalizable observation. The results do not generally imply that meeting equity objectives results in a 
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substantial loss in efficiency, or vice versa, (as illustrated in the next set of numerical experiments) or that 
zero deficit values are always achievable.  

 

 
Figure 19. Efficiency and equity deficits in PDP tests 

3.3.2. Simulation Tests using Agent-Based Model 
The rebalancing methodology was embedded within a computer program that simulated e-scooter travel 
demand using MDES as the background setting. The program’s inputs were generated using data 
associated with MDES, including the region’s transportation network and land use information, and the 
e-scooter travel patterns. As there are no detailed travel behavior data for the region, model structures 
and parameters were assumed to set up the travel behavior models. 

The e-scooter fleet size was set to 100, similar to the fleet size in MDES. The zonal system used in 
the simulation is presented in Figure 20. There are 219 zones in which simulated agents act (identified as 
the “zones” in the figure) and 15 regions that serve as the pickup zones from the optimization models’ 
perspective (more details on these regions next). The e-scooter pickup and drop-off decisions were made 
at the level of the 15 regions (and therefore 𝝀 and 𝝁 have dimensions 1 × 15). Note that there is a drop-
off zone associated with each region.  
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Figure 20. ABM zonal system 

 
Figure 21 presents the structure of the simulation (in the figure, 𝑡𝑚𝑎𝑥  refers to the last simulation 

period, and 𝑔𝑜 is a Boolean variable that indicates if a rebalancing plan is active or not). Time in the 
computer model was discretized into 5-minute blocks, with the day starting at 6:00 AM and ending at 8:00 
PM. In each period 𝑡 (i.e., program iteration), the travel behavior of synthetic agents was simulated, the 
location of e-scooters in the system was updated, and then the program executed a rebalancing plan if 
one was active, or it generated a rebalancing plan if the iteration corresponded to a period within the set 
𝑻𝒓 of predetermined rebalancing periods. The rebalancing period set was defined as 𝑻𝒓 ={8:00 AM, 10:00 
AM, 12:20 PM, 2:20 PM, 4:00 PM}. If 𝑡 ∈ 𝑻𝒓, the target distributions were generated using the TDP. The 
efficiency target distribution 𝝀 was defined as the vehicle distribution expected to maximize the number 
of trips in a two-hour time horizon, as predicted by a trip departure model generated by the XGBoost 
algorithm (see Appendix B). The equity target distribution 𝝁 was defined as the distribution that 
minimized the AUC-based Atkinson inequality index, with 휀 set to 0.75. The AUC was computed as 
discussed in Chapter 1. Instead of searching for the optimal 𝝁 each time the rebalancing model was 
invoked, a fixed 𝝁 was determined. It was assumed that the 𝝁 that minimized the inequality in spatial 
access could be treated as the static minimum number of e-scooters required by each region. The PDP’s 
𝑚𝑖 values were set to zero in the simulation. The TDPs were solved using the heuristic discussed in 
Appendix C.  
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Figure 21. Framework of the computer simulation program  

 
Given the 𝝀 and 𝝁 e-scooter distributions, the PDP was solved, and the implementation of the vehicle 

pickup and drop-off plan generated by the model was simulated. The travel time between pickup and 
delivery zones was accounted for in the simulation, although, for simplicity, instantaneous vehicle pickup 
and drop-offs were assumed. Vehicle pickups were performed at the level of the 15 pickup regions, 
meaning that if, for example, 10 e-scooters needed to be picked up from a region, those e-scooters would 
be removed from the region’s zones in which the agents left them. The truck in this simulation was 
assumed to have the capacity to carry up to 40 e-scooters.    

The travel behavior of the synthetic agents was simulated using a simple activity-based model (ABM). 
Each synthetic agent was assigned a fixed schedule that contained the agent’s location (i.e., zone) for each 
5-minute period of the day, including the periods necessary for the agent to travel between zones. As 
previously mentioned, the zonal system in which the agents operated was constituted by 219 zones. Each 
agent was also given a home zone; the agent’s schedule began and ended in the home zone. For each trip, 
the ABM simulated an agent’s mode choice decision using Monte Carlo simulation. This simulation 
depended on the mode choice probabilities generated by a logit model. Only two modes were considered: 
walk and e-scooter. Each agent was assigned a set of parameters to compute their mode choice 
probability. The deterministic utility of the walk mode was a function of a constant and the walking travel 
time between a trip’s origin and destination. The e-scooter mode’s deterministic utility was a function of 
the travel time and cost associated with the e-scooter closest to the agent, the number of previous e-
scooter trips performed by the agent, and whether the agent was returning home. Agents were also 
labeled as UPRM students or non-UPRM students. A total of 3,700 agents were generated for the 
simulation.       

The simulations were run under three scenarios: i) no rebalancing scenario, ii) scenario with 
rebalancing weights set to {𝜔1 = 0.1, 𝜔2 = 2, 𝜔3 = 0}, and iii) scenario with rebalancing weights set to 
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{𝜔1 = 0.1, 𝜔2 = 0, 𝜔3 = 2}. The computer model was run 15 times for each scenario. Note that in the 
second scenario the primary goal of the rebalancing model was to achieve the 𝝀 distribution (and 
therefore maximize trips), while in the third scenario the primary goal was to achieve the 𝝁 distribution 
(and therefore minimize the inequality in the spatial access to the e-scooters). The results of the scenario’s 
trials runs are summarized in the boxplots presented in Figure 22. In the simulation, on average, focusing 
the rebalancing operations on maximizing the number of trips increased trips by 45%, relative to the no-
rebalancing scenarios, which was only slightly higher than the 43% improvement obtained when the 
rebalancing model was focused on achieving the equity goal. However, there was a significant difference 
in the equity-based performances; relative to the no-rebalancing runs, the trip-focused model resulted in 
a reduction of the AUC-based Atkinson inequality index of 15%, while the equity-focused model resulted 
in a reduction of 30%. As in the PDP tests, these tests do not provide general insights into the expected 
performances of real-world dockless micromobility services, but the results illustrate that there could be 
situations in which seeking a more spatially equitable distribution of micromobility vehicles could result 
in a manageable loss in performance efficiency.   

 
Figure 22. Total trips and average Atkinson index values for simulation under different rebalancing regimes (NR: 

no rebalancing scenario; “Goal: Trips”: {𝝎𝟏 = 𝟎. 𝟏, 𝝎𝟐 = 𝟐, 𝝎𝟑 = 𝟎} scenarios; “Goal: Equity”: 
{𝝎𝟏 = 𝟎. 𝟏, 𝝎𝟐 = 𝟎, 𝝎𝟑 = 𝟐} scenarios) 

 

3.4. Closing Remarks 
 
An optimization-based framework was proposed for vehicle rebalancing operations based on efficiency 
and equity objectives relevant to dockless micromobility services. This quantitative approach can be a 
complement to the essential community engagement work required to identify the barriers faced by 
people when accessing micromobility services. As discussed by Shaheen et al. (2017), there are spatial, 
temporal, economic, physiological, and social barriers that can hinder the full participation of individuals 
in shared mobility services. Naturally, the community engagement work is also fundamental for specifying 
the objectives and constraints of the optimization-based framework, particularly when selecting the 
definitions and measures of equity and access. More work is required, for example, to examine if voluntary 
data-sharing programs designed to enhance the equity-based operations of micromobility services are 
acceptable among different community groups, or, more generally, if people are interested in efforts to 
guide micromobility operations based on equity measures that use person-level information. More work 
is also required to quantify what are the costs of different equity enhancing strategies in micromobility 
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services, including the approaches proposed in this report, and to determine how these costs can be 
covered to ensure that the operations of microbiology services are economically sustainable.  

The algorithms used to solve the optimization problems (TDP and PDP) are likely to be the main 
challenge to the practical implementation of the proposed methodology. In the context of the 
experiments presented in Section 3.3  and of the small-scale services like MDES, the proposed heuristics 
are sufficient. However, given that the presented models are supposed to operate in real-time decision-
making applications, more work is required to identify or develop heuristics that can be used to quickly 
find good solutions to the proposed models in large-scale systems.  
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4. Conclusions and Potential Research Opportunities   
 

This project explored the issues of equity and access in micromobility services by studying the 
experience of a dockless e-scooter service in Puerto Rico and by proposing a rebalancing model that 
considered spatial and social inequity in the distribution of vehicles. In Chapter 2, an analysis of the 
dockless micromobility experience of Mayagüez, PR, was presented. In this analysis, MDES user and 
nonuser characteristics were identified, and the spatiotemporal patterns of e-scooter trips were explored. 
In addition, regression analyses were used to examine the relationship between the sociodemographic 
and land-use characteristics of the region and the demand levels observed in MDES. Lastly, spatial access 
indicators were developed and applied to the MDES case.  

The key findings of the research presented in Chapter 2 are:  

• MDES users tended to be young and male, and trips were concentrated in and around a 
university’s campus. 

• Costs, the built environment, and safety concerns were identified as the main reasons for not 
using MDES. 

• Traffic congestion and lack of parking spaces were identified among the main reasons for using 
MDES, which suggest that the service reduced the number of auto trips in the service area. The 
magnitude of the auto trip reduction is unclear, but it could point to the congestion reduction 
potential of micromobility services, particularly in cities that lack effective public transportation 
services.   

• Spatial access differences were observed among the neighborhoods in MDES. These differences 
are probably the results of the spatial distribution of MDES main users (UPRM students), the 
sociodemographic characteristics of the population (generally low-income and older), and the 
rebalancing operations aimed, naturally, at satisfying user demand. 

In Chapter 3, a two-step methodology was presented for conducting rebalancing operations according 
to efficiency and equity objectives relevant to micromobility systems. An optimization model was 
proposed for identifying target micromobility vehicle distributions to achieve efficiency and equity goals 
in the performance of a system. Two objective function formulations were proposed to account for spatial 
and social equity considerations. Additionally, a pickup and delivery problem was proposed that balances 
efficiency and equity objectives in the search for a vehicle redistribution plan. The methods and concepts 
presented in this chapter contribute to the body of literature on the use of quantitative methods to design, 
plan, and operate systems considering equity. The simulation results suggest that, relative to efficiency-
focused rebalancing, there are scenarios in which equity-focused rebalancing operations could result in 
minor reductions in total trips and significant improvements in spatial access to micromobility services. 
Additional research is necessary to reach generalizable conclusions on the likely effects of equity-focused 
rebalancing operations on the overall performance of dockless micromobility services. 

This research contributes to real-world practice by presenting network-based methods and metrics 
that can be applied in the equity evaluation of dockless micromobility services. It also helps planners, 
engineers, and community organizers by providing additional real-world evidence that can be used to 
advocate for investments in infrastructure that can accommodate bicyclists, scooter users, and other 
travelers that do not rely on automobiles. Additionally, the research points to additional types of equity 
performance requirements that could be included as part of the operational goals that micromobility 
companies must satisfy.  

There are several future research opportunities connected to the work presented in this report. Field 
interviews and surveys of MDES users, along with naturalistic observations, can be conducted to explore 
in more detail their characteristics and the reasons for using the service. In addition, this research would 
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help to quantify the magnitude of the auto trip reductions caused by MDES and the subsequent impacts 
on traffic congestion, if any. Outside Mayagüez, dockless e-scooter services have begun operations in at 
least four other Puerto Rican cities, including the capital San Juan. The system in San Juan offers 
opportunities for micromobility travel demand research in urban environments with relatively large 
tourist populations and unreliable public transportation options. Beyond studies regarding the 
micromobility experience in PR, comparative studies using the proposed graph-based spatial equity 
measures could also be performed to gain insights on the impact of land use and transportation network 
infrastructure in the spatial access to micromobility. 

Furthermore, research opportunities in the development of optimization models to enhance equity 
and access. Extensions to the models presented in Chapter 3 can be proposed to consider the presence 
of other modes (i.e., buses) in equity-conscious rebalancing operations. An adaptive model structure that 
generates the 𝑻𝑟  would be particularly useful for operators. In addition, models can be formulated to help 
operators and city planners design the service areas of micromobility services. Service area requirements, 
including the inclusion of historically disadvantaged communities, are a common condition set by cities to 
allow the operation of micromobility services. Even without equity requirements, service area design is a 
concern for companies that want to ensure that their services generate a profit. Also, new heuristics are 
required to speed up the discovery of good solutions to the rebalancing optimization models, particularly 
for applications in large-scale micromobility systems. 

 Lastly, and perhaps more challenging, models can be developed to optimally make decisions on total 
subsidy levels for micromobility trips and on the real-time distribution of these subsidies to enhance 
access among low-income population groups. As the MDES experience suggests, costs are among the 
main barriers to access micromobility services and enhancing spatial access does not address this 
problem. Considerable work has been completed on algorithms to make real-time pricing decisions to 
maximize profits; future research can explore the potential for adapting these models to maximize equity 
and access.  
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Appendix A.  Algorithm to Process Trip Start and End 
Coordinates 

 
GPS errors are a fundamental challenge in the study of travel patterns in micromobility systems. In this 
project, GPS errors and the resulting inconsistencies in trip starting and ending locations were the main 
problems with the trip record data. For example, in approximately 51% of cases, an e-scooter’s ending 
and starting locations in sequential trips were more than 150 meters apart, and these differences were 
not consistent with rebalancing operations (if there were no errors, the ending coordinate of trip 𝑖 would 
be the same as the starting coordinate of the next trip, 𝑖 + 1). These coordinate differences would not be 
an issue in situations in which the size of the areas under analysis and the average trip lengths render 
them unimportant. In the current application context, however, the service area is relatively small, and 
the zones within this area are, naturally, even smaller. Therefore, an algorithm was developed with the 
objective of adjusting the recorded starting and ending trip coordinates in order to produce plausible trip 
sequences. The proposed procedure could be considered as a type of map-matching algorithm (Quddus, 
Ochieng, & Noland, 2007), but in this problem, the only data available are the starting and ending latitudes 
and longitudes of a sequence of trips, rather than arrays of GPS data that contain starting, intermediate, 
and ending coordinates (i.e., trajectories).  

 Next, the steps of the developed algorithm are described. Underlying this algorithm is the 
assumption that the e-scooter starting coordinates were more reliable than the e-scooter ending 
locations. This assumption was based on the observation that the starting coordinates were spatially 
clustered on a somewhat discrete number of regions known to be common e-scooter origins and 
destination, whereas the ending coordinates were spatially dispersed in travel ways (e.g., roadways), 
suggesting parking patterns that have not been observed in the city (particularly, in UPRM).   

 
Step 0. Define the feasible e-scooter parking space 
Define the spaces in which e-scooters can be parked. These spaces could include sidewalks, plazas, parking 
lots, or any space that the analyst considers as a place where it would be reasonable to expect e-scooters 
to be parked. Let 𝚿 represent the set of these feasible parking spaces. In the Mayagüez context, all 
sidewalks within the service area, as well as plazas and corridors within UPRM, were defined as feasible 
parking spaces. These spaces were identified and represented as polygon objects using GIS.  

In addition, as part of Step 0, identify a set of coordinates 𝚯 that represents the locations in which the 
operator places the e-scooters at the start of the day. Again, in the current context, these locations were 
selected by first creating a GIS map with the starting coordinates of the first trip of all e-scooters on all 
days, and then identifying the centers of the resulting coordinate clusters; the center coordinates 
constituted the 𝚯 set.  

The steps that follow (Steps 1-5) are part of a loop that repeats itself for each day in the data set and 
for each scooter. In this discussion, let 𝒆𝑛𝑣𝑖 represent the recorded ending latitude and longitude of trip 𝑖 
(where 𝑖 is the index of trips in an ordered sequence of trips) for e-scooter 𝑣 on day 𝑛, and 𝒔𝑛𝑣,𝑖+1 denote 
the recorded starting latitude and longitude of trip 𝑖 + 1. Also, let 𝑟𝑚𝑎𝑥 represent the maximum distance 
from a recorded coordinate within which it would be reasonable to expect the true coordinate; that is, 
𝑟𝑚𝑎𝑥 is an error radius. This parameter could be defined based on observed GPS error ranges (Caltrans, 
2020). 

  
Step 1. Find a reasonable parking spot within the space proximal to 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 
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For the starting coordinate 𝒔𝑛𝑣1, set the adjusted starting coordinate as the coordinate in 𝚯 that is closest 

to 𝒔𝑛𝑣1. For the subsequent coordinate pairs (𝒆𝑛𝑣𝑖 , 𝒔𝑛𝑣,𝑖+1), find the geodesic distance 𝑑𝑛𝑣𝑖 between the 

pairs. If 𝑑𝑛𝑣𝑖 > 2 × 𝑟𝑚𝑎𝑥, go to Step 2. Otherwise, generate two circles of radius 𝑟𝑚𝑎𝑥, one with center at 
𝒆𝑛𝑣𝑖 and the other with center at 𝒔𝑛𝑣,𝑖+1. Then, determine the intersection between 𝒆𝑛𝑣𝑖’s circle, 𝒔𝑛𝑣,𝑖+1’s 
circle, and 𝚿 (see Figure A1). If this procedure results in a null set (i.e., there is no feasible parking space), 
go to Step 2. Otherwise, select the parking spot closest to both 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1, and return the coordinate 
of this spot as the adjusted coordinate of 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 (again, if the were no errors, 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 
would be the same). In this study, the implementation of this intersection procedure would result in a set 
of polygons from 𝚿. The polygons were then split using a polygon triangulation algorithm, and the 
centroids of the resulting triangles would be determined; these centroids constituted the candidate 

parking spots. The centroid coordinate with the minimum combined distance to the (𝒆𝑛𝑣𝑖 , 𝒔𝑛𝑣,𝑖+1) pair 

was returned as the adjusted coordinate for both 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1. Also, 𝑟𝑚𝑎𝑥 was set to 100 meters. 
 

 
Figure A1. Illustration of the intersection procedure to identify feasible parking spots 

 
Step 2. Anchor coordinates based on the 𝒔𝑛𝑣,𝑖+1 or declare a rebalanced e-scooter 

Generate a circle with radius 𝑟𝑚𝑎𝑥 and center on 𝒔𝑛𝑣,𝑖+1, and find the intersection between 𝒔𝑛𝑣,𝑖+1’s circle 
and 𝚿. If this intersection procedure results in a null set, go to Step 3. Otherwise, select the parking spot 
closest to 𝒔𝑛𝑣,𝑖+1, and return the coordinate of this spot as the adjusted coordinate of 𝒔𝑛𝑣,𝑖+1 (the 
implementation of this procedure in this study was as explained in Step 1). Then, consider if it would be 
feasible for the previous trip end 𝒆𝑛𝑣𝑖 to adopt the new adjusted coordinate given to 𝒔𝑛𝑣,𝑖+1. To do this, 

find the length of the shortest path between 𝒆𝑛𝑣𝑖 and 𝒔𝑛𝑣,𝑖+1 on network 𝑮, and divide it by the recorded 
travel time of trip 𝑖. If the resulting speed is less than or equal to a selected upper bound speed (e.g., the 
maximum e-scooter speed) and greater than or equal to a lower bound speed, then set 𝒆𝑛𝑣𝑖 as the 
adjusted coordinate of 𝒔𝑛𝑣,𝑖+1, and return this information. Otherwise, find an adjusted coordinate for  
𝒆𝑛𝑣𝑖 by applying the previous intersection-based procedure described for 𝒔𝑛𝑣,𝑖+1. This implies that the e-

scooter was moved by the operator from the adjusted 𝒆𝑛𝑣𝑖 to the adjusted 𝒔𝑛𝑣,𝑖+1, presumably as part of 

a rebalancing operation. 
 

Step 3. Anchor coordinates based on the 𝒆𝑛𝑣𝑖 or declare a rebalanced e-scooter 
Repeat the procedure described in Step 2, but i) use  𝒆𝑛𝑣𝑖 as the anchor, instead of 𝒔𝑛𝑣,𝑖+1, ii) go to Step 
4 if the intersection procedure results in a null set, and iii) check the implied speed from the adjusted 
coordinates relative to the information of trip 𝑖 + 1. 

 
Step 4. Discard trip records 
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Assuming that the level of detail suggested by this algorithm is necessary, reaching this step means that 
no reasonable parking spot was identified for the coordinates. Therefore, the data is discarded. In this 
study, no data were discarded based on this criterion as the algorithm did not reach Step 4. Presumably, 
this would be the case in most urban areas given their roadways and sidewalk densities.  

 
Step 5. Last 𝒆𝑛𝑣𝑖 coordinate 
Note that there is no 𝒔𝑛𝑣,𝑖+1 for the last trip 𝑖, so the previous procedure does not work to adjust the 
last trip’s 𝒆𝑛𝑣𝑖 coordinate. However, the intersection procedure described in Step 2 can be applied to 
assign the final coordinate adjustment for the e-scooter.  
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Appendix B.  Predictive Accuracy of Machine Learning 
Models in the Context of MDES Operations 

 
Machine learning (ML) algorithms, including state-of-the-art deep learning algorithms, are at the core of 
the operations of emerging transportation network companies, including companies that operate 
dockless micromobility services. In academic research, these methods are commonly proposed as part of 
methods to forecast demand and, by extension, guide the rebalancing operations in micromobility 
systems. In this appendix, research to train machine learning-based models using MDES data is discussed. 
The objectives of this work were: 

i. to demonstrate the predictive power of ML algorithms in situations in which there are 
relatively small datasets available to train the models,  

ii. to support the assumption that ML algorithms could be used to generate the models required 
by the TDP. 

iii. and to generate ML models that could be used in the numerical tests. 
This appendix is divided into six sections. In the first section previous ML studies that consider 

micromobility services are reviewed. This is followed by a discussion of the prediction problems of 
interest, the available data, and the ML algorithms used in the project. The last two sections present the 
results of the prediction tests and discuss possible research directions.  

B.1. Previous Studies 
Statistical and machine learning methods, including more recent deep learning approaches, have been 
developed to understand and forecast demand for micromobility services. For SBS systems, extensive 
research has been conducted on the relationship between the sociodemographic characteristics of 
individuals – as discussed in Section 2.1. Findings from these studies have informed policy discussions and 
resulted in equity requirements for micromobility services. Beyond understanding travel behavior, models 
have also been developed to forecast station-level demand using primarily historical trip record data. For 
example, Médard de Chardon and Caruso (2015) proposed regression-based models to estimate station-
level bike trips at different levels of temporal aggregation. As part of a model to solve the dynamic 
rebalancing problem, Regue and Recker (2014) used gradient boosting machines to produce short-term 
demand predictions at the SBS station level. In addition to creating variables based on the historical trip 
data, these researchers introduced weather-related features in the prediction models. Time series 
(Kaltenbrunner, Meza, Grivolla, Codina, & Banchs, 2010), Bayesian network (Froehlich, Neumann, & 
Oliver, 2009), and neural network (Caggiani & Ottomanelli, 2012) approaches are among other types of 
models that have been applied to forecast SBS trip levels.  

The large-scale datasets generated by dockless micromobility services have enabled the application 
of deep learning methods to generate dynamic, short-term demand forecasts. For example, Xu et al. 
(2018) developed long short-term memory neural networks (LSTM-NN) to forecast DBS trip production 
and attraction at the traffic zone level. The model considered time intervals as short as 10 minutes. A 
convolutional LSTM-NN was used by Ai et al. (2019) to forecast SBS trips in Chengdu, China. The city was 
divided into a grid of equally sized cells of size 4 km × 4 km, and the temporal dimension was divided into 
six time periods. He and Shi (2020) proposed a graph-based neural network to predict DES flows between 
city zones. Using deep neural networks, Yan and Howe (2019) proposed a model that predicts the value 
of a linear combination of demand and a fairness metric. They propose two fairness metrics that quantify 
the gap between the vehicles assigned to an advantaged group and the vehicles assigned to a 
disadvantaged group. In a different type of application, Pan et al. (2019) developed a deep reinforcement 
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learning framework that determines how much users should be paid to help in the rebalancing of a 
dockless bike-sharing system.  

B.2. Data Description 
Two types of data were used for the ML training and testing task: MDES observed and simulated data. 
The source of the observed data, as discussed in Section 2.3.1, was the MDES operator; Skootel provided 
records on approximately 66,000 e-scooter trips completed during the 2019-2020 academic year. These 
data were processed to correct GPS errors (see Appendix A). As part of the ML database preparation, for 
each 5-minute period and each day of operation, counts of trip arrivals and departures for each zone in 
the 12-zone system presented in Figure B1 were generated; the 12-zone system is called the B1 system 
hereafter. To complement the trip record data, information on UPRM course sections (e.g., class start and 
end times, classroom location), the number of students enrolled in each section, and the dates of holidays 
were collected. Lastly, data on rain events during the period of analysis was also collected. 

 
B1. Zonal system used in the ML algorithm tests 

The simulated data was generated using the output of the activity-based model (ABM) discussed in 
Section 3.3.1. The ABM was run 120 times (akin to 120 days of observation). In each trial run, an ad-hoc 
rebalancing plan (i.e., plan based on knowledge of selected simulation parameters) was used to adjust 
vehicles during the run. As with the observed MDES data, the ABM simulation generates trip information 
that was processed to generate zonal level counts of trip arrivals and departures for each 5-minute period 
in each model run (instead of each day). In addition, the AUC-based system-wide inequality indicator was 
computed for each 5-minute period in each model run. Simulated revenue information was also collected. 

B.3. Prediction Problems and Feature Engineering   
The prediction problems of interest are: 

i. Prediction of trips at the service area (SA) level using observed data. 
ii. Prediction of trip arrivals and departures at the B1 zonal system level using observed data. 
iii. Prediction of trip arrivals and departures at the ABM zonal system level using simulated data. 
iv. Prediction of AUC-Atkinson indicator (hereafter, the AUC) and revenue generation at the ABM 

zonal system level using simulated data. 
The initial set of tests focused on the prediction of trip departures at the SA and B1 zonal levels. This 

initial set of tests was performed to identify the most accurate ML algorithms to use in the rest of the 
prediction problems and the numerical tests discussed in Section 3.3. For the initial tests, the SA models 
were developed to predict the hourly number of trips generated in the MDES service area. In the case of 
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the B1 models, trip departures were estimated for each of the 12 zones in the B1 zonal system and each 
of the eight consecutive two-hour periods in a day of operation. The start of the first two-hour period was 
set at 5:45 AM. The features considered in the model development process are reported in Table B1. In 
general, dummies were included for days of the week, time of day, zones, rainfall events, and holidays. 
Historical averages, moving averages, and trip count observations from previous days were among the 
continuous variables incorporated in the models. 

 
Table B1. Features used in Model Training 

 

IDs Feature Description Type 
Model 

SA B1 

1 Day of Week D X X 

2 Time period (e.g., hour, two-hour period) D X X 

3 Level 1 zone D  X 

4 Month D  X 

5-7 Historical averages of trip productions for prior two-, three-, and four-hour periods Q X X 

8, 9 Seven-day averages of trip productions for the prior two- and three-hour periods Q X X 

10, 11 Moving averages of trip productions considering prior two- and three-hour periods Q X X 

12 Mean number of trip productions observed three days prior on same zone and period Q  X 

13 Mean number of trip productions observed two weeks prior on same zone, period, and day-of-
week 

Q  X 

14 Number of trip attraction in prior period and in the same zone Q  X 

15 Number of students enrolled in classes starting in periods after period of analysis Q X X 

16 Number of students enrolled in classes ending during period of analysis Q X X 

17 Rain event during period D X X 

18 Rain event in next 15 minutes (assuming weather forecasts can be used) D  X 

19 Rain event before trip on the same day D  X 

20 Rain event 15 minutes before period D  X 

21 Holiday D X  

22 Fall semester D X X 

23 Number of scooters deployed on the day Q  X 

24 Number of scooters in the zone during period Q  X 

Note: D stands for dummy (binary) variable, Q stands for continuous variable and X indicates that the variable was 
included in the model associated with the column. 

B.4. Machine Learning Algorithms Applied 
The size of the available dataset suggests, as a preliminary step, the use of standard ML  algorithms, as 
opposed to more advanced deep learning approaches that generally require large-scale datasets (Scikit-
Learn, 2020). Besides the classical linear regression model, the Bayesian ridge, 𝜖-support vector machines 
(SVM), random forest, gradient boosting, AdaBoost, and XGBoost regression methods were applied for 
the prediction of trip productions at the SA and B1 models.  

Next, a brief introduction is provided for the applied methods. Bayesian ridge regression is a method 
in which the output variable is assumed to be normally distributed, the regressor coefficients have a 
multivariate Gaussian prior, and the priors of the regularization parameters are Gamma distributed 
(Tipping, 2001). The basic objective of the applied SVM method is to attempt to find a function that 
produces deviations that are, at most, an 𝜖 value for all values being predicted in the training data (Smola 
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and Scholkopf, 2004). The multi-layer perceptron is a simple class of feed-forward neural network that 
can be applied for regression (Jain, Mao, & Mohiuddin, 1996). The random forest, gradient boosting, 
AdaBoost, and XGBoost (T. Chen & Guestrin, 2016) methods are examples of ensemble algorithms that 
can be used for both classification and regression; ensemble here refers to their ability to combine the 
predictions of multiple, individual ML models (e.g., the random forest algorithm creates ensembles of 
decision trees). These methods were implemented using Python’s scikit-learn library (Pedregosa et al., 
2011).  

B.5. Results 
As standard practice suggests, the data were split into training datasets (used to train the models) and 
testing datasets (used to test the application and accuracy of the models). The coefficient of 
determination (𝑅2; computed by comparing observed versus predicted values), mean absolute error 
(MAE) and mean square error (MSE) were selected as the performance metrics for the regression models. 
For the first tests using the observed data, the data splits were performed by dividing the data into two 
discrete, time-contiguous blocks, with a single time point serving as the training/testing split boundary 
(i.e., the convenience sampling approach commonly used with time series (Reitermanová, 2010)). For 
both the SA and B1 models, a 70/30 split was used (70% training, 30% testing). Observations before August 
28, 2019, were removed as they correspond to the first weeks of MDES operations, and therefore contain 
patterns driven by the novelty of the service. In Table B2, the performance metrics obtained by the 
regression models trained with the selected ML algorithms are presented. Among the SA models, the best 
performing model was the random forest model, in terms of 𝑅2 (0.97), and the multi-layer perceptron 
model, in terms of MAE (6.18) and MSE (75.12) values. In terms of the 𝑅2, MAE, and MSE values, the best 
performing B1 departure model was generated by the random forest algorithm, while XGBoost, random 
forest, and AdaBoost produced models with the best 𝑅2, MAE, and MSE values. 

 
Table B2. Performance Metrics for Models Trained with Observed Data 
 

Algorithm 
SA Model B1 Model - Departures B1 Model - Arrivals 

𝑹² MAE MSE 𝑹² MAE MSE 𝑹² MAE MSE 

Bayesian Ridge 0.81 6.18 78.0 0.86 1.61 7.91 0.68 2.39 16.64 

Random Forest 0.97 6.33 88.0 0.95 0.89 2.80 0.85 1.57 7.33 

Linear 0.81 6.34 79.2 0.86 1.61 7.91 0.68 2.39 16.63 

Gradient Boosting 0.79 6.43 88.6 0.93 1.06 3.68 0.80 1.92 10.36 

Multi-Layer Perceptron 0.82 6.18 75.1 0.86 2.03 7.92 0.58 2.78 21.45 

AdaBoost 0.79 6.34 88.0 0.77 2.96 12.4 0.87 1.62 6.25 

XGBoost 0.78 6.59 90.3 0.93 1.07 3.70 0.87 1.58 6.60 

 
 
In Table B3, the results for additional tests performed with the XGBoost algorithms are reported. In 

these tests, the performance of the departure model was examined using two dynamic data splitting 
approaches that simulate real-life model applications. In the first approach, the training data grow as time 
progresses and the information of more trips is processed. With this expanding dataset, the model was 
trained. The model performance was tested using the data for the week following the last date in the 
training dataset. This is labeled as the expanding window approach. In the tests, the model was applied 
to make predictions over two-hour time horizons on each day of the test week. In the second approach, 
the training data has a fixed size, and the time window from which the training data is selected moves (or 
slides) as the model is trained and tested (again, using the data from the next week); this second approach 
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is labeled the sliding window approach. The results suggest that in this system, and with the amount of 
data available, the explaining window approach results in better models. In Figure B1, the 𝑅2 metric values 
obtained by the two departure models for the weeks in the analysis period are presented. This figure 
again shows that the performance of the model trained using an expanding data window was better and 
that the performance of both models degraded significantly during the winter break period when there 
were significantly fewer trips.  
 
Table B3. Performance of XGBoost Departure Models Trained under Dynamic Data Splitting 

 

Statistic  
Expanding Window Sliding Window 

𝑹² MAE MSE 𝑹² MAE MSE 

Mean 0.86 0.98 3.31 0.80 1.09 4.30 

Standard Deviation 0.12 0.31 2.14 0.18 0.33 2.58 

Min 0.49 0.36 0.31 0.14 0.43 0.45 

Max 0.95 1.73 9.28 0.93 1.73 9.49 

 

 
Figure B1. 𝑹𝟐 values (score) in time for XGBoost departure models trained under dynamic data splitting 

 
The models trained using simulated data had even better performance metrics, which is not surprising 

as there are no unknown events in the simulation, and the trip behavior that is recorded is the product of 
an algorithm whose output, although not deterministic, is still bounded by a set of clearly defined rules. 
In all tests with the simulated data, the XGBoost algorithm was used given its good performance with the 
observed data and the fact that there are easy-to-use tools to tune the parameters of this algorithm. The 
𝑅2 values obtained for all the models trained with the simulated data (departure, attraction, AUC, and 
revenue models) were over 0.95. Figures B2 and B3 are presented as examples of the performance 
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obtained for the AUC and revenue models using simulated data. Each data point is a prediction made for 
the value of interest (i.e., average AUC-based Atkinson index and total revenue) for a two-hour time 
horizon. As can be observed, there was a close relationship between the predicted and observed values 

in the simulation. The 𝑅2, MSE, and MAE values for the AUC tests were 0.99, 2E-3, and 0.01, respectively, 
while for the revenue tests the metrics had values of 0.97, 62.7, and 5.7, respectively. 

 

 
Figure B2. Predicted AUC versus observed AUC in the simulation 
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Figure B3. Predicted revenue versus observed revenue in the simulation 

B.6. Closing Remarks 
The results for the prediction tests reported in this appendix suggest that, even with limited data, like in 
the case of the MDES and simulation databases, standard ML algorithms generate accurate models. This 
supports the contention made in this project and in the reviewed literature that ML algorithms can be 
used as part of micromobility decision frameworks. This includes the use of models to predict the level of 
inequality in access in the system, as suggested in Chapter 3. 
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Appendix C.  Heuristic for the Target Distribution 
Problem 

 
A heuristic based on the differential evolution (DE) algorithm is proposed for the TDP. The DE algorithm 
is a type of evolutionary algorithm originally proposed for continuous optimization problems. Several 
extensions have been proposed for DE (Zhang & Sanderson, 2009), including DE approaches to solve 
integer programming problems. The DE-based heuristic presented here was designed with search 
strategies that effortlessly satisfy the TDP constraints.  

 As in other evolutionary algorithms, the DE algorithm generates a set of candidate solutions 
(offspring) by combining information from a set of previously evaluated solutions (parents). A solution in 
the TDP context refers to a vehicle distribution that satisfies the problem constraints. In each iteration of 
the proposed algorithm, an offspring solution is generated by applying two mutation operations. Let there 
be 𝑁𝑃 parent solutions, with the 𝑤-th parent information contained in vector 𝒔𝑤 For each parent 𝑤 in 
iteration 𝑛, an offspring 𝒚𝑤 is generated by randomly selecting another parent solution 𝑣 (𝑤 ≠ 𝑣) from 
the pool of parent solutions and then applying the rule: 

 
𝒚𝑤 = 𝒔𝑛𝑤 + 𝑓𝑛 ∙ (𝒔𝑛𝑣 − 𝒔𝑛𝑤)  (C1) 

 
where 𝑓𝑛  (𝑓𝑛 ∈ 𝚼) is a combination factor whose value iteratively cycles through set 𝚼. This strategy is 
used to gradually shift the heuristic from exploitative search to explorative search (e.g., 𝚼 =
{0.1, 0.15, 0.2, 0.5}). Function (C1) shifts values (vehicle quantities) from the locations indicated by 𝒔𝑛𝑤 to 
the location indicated by 𝒔𝑛𝑣. Low values of 𝑓𝑛  imply small changes to the distribution 𝒔𝑛𝑤 in direction to 
𝒔𝑛𝑣, whereas large values of 𝑓𝑛  create larger mutations in the direction of  𝒔𝑛𝑣. After each 𝒚𝑤 is generated, 
a rounding function is used to ensure that all values in the vector are integers. If the sum of values in 𝒚𝑤 
is greater than the fleet size ℎ, then a vehicle unit is removed from a randomly selected location 
(coordinate of 𝒚𝑤) until the sum of 𝒚𝑤 is equal to ℎ. Alternatively, if the sum of values in 𝒚𝑤 is less than 
ℎ, then a vehicle unit is added to a randomly selected location until the sum of 𝒚𝑤 is equal to ℎ. Call this 
first set of mutation strategies the combination operation.  

 Having ensured that the values in 𝒚𝑤 are integers and that they sum to the fleet capacity, the 
algorithm performs the second set of mutation strategies (the swapping operation) with probability 
𝑝𝑠𝑤𝑎𝑝. If the swapping operation is activated, coordinate 𝑖 (𝑖 ∈ 𝑱) is randomly selected among locations 

that have vehicles, coordinate 𝑗 (𝑖 ≠ 𝑗, 𝑗 ∈ 𝑱) is randomly selected among all possible locations, and then 
the vehicle quantities in each coordinate are updated according to: 

 
𝛿 = ⌈𝜑𝑦𝑤𝑖⌉  (C2) 

𝑦𝑤𝑖 ≔ 𝑦𝑤𝑖 − 𝛿  (C3) 
𝑦𝑤𝑗 ≔ 𝑦𝑤𝑗 + 𝛿  (C4) 

 
where 𝜑 is a parameter that determines the magnitude of the vehicle swap between coordinates 𝑖 and 𝑗. 

 Once the 𝒚𝑤 is produced, it is evaluated using the objective function 𝐹𝑧(𝒚𝑤) The final offspring 
𝒚𝑤 replaces the parent 𝒔𝑛𝑤 if 𝐹𝑧(𝒚𝑤) > 𝐹𝑧(𝒔𝑛𝑤); otherwise, the solution 𝒔𝑛𝑤 remains in the pool of 
parent solutions that are used to generate the offspring in the next generation. To summarize, the main 
steps of the proposed algorithm are presented in Table C1. 
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Table C1. Pseudocode of DE algorithm for TDP  
 

Line  Procedure  
01 Begin 
02 
03 
04 

 Set 𝑛 = 0. 
Create a random population 𝒔𝑛𝑤  (𝑤 = {1,2, … , 𝑁𝑃} and evaluate each solution using 𝐹𝑧(𝒔𝑛𝑤) 
For 𝑛 = 1 𝑡𝑜 𝑁: 

05   For 𝑤 = 1 𝑡𝑜 𝑁𝑃: 
06 
07 

   Generate 𝒚𝑤 offspring based on the combination operation. 

If 𝑟𝑎𝑛𝑑(0,1) ≤ 𝑝𝑠𝑤𝑎𝑝: 
08     Mutate 𝒚𝑤 using the swapping operation.  
09    End If 
10    If 𝐹(𝒚𝑤) > 𝐹(𝒔𝑛𝑤): 
11     𝒔𝑛𝑤 ≔ 𝒚𝑤 
12    End If 
13   End For 
14  End For 
15 End 

 
In the simulation tests discussed in section 3.3.2, the parameters were set as: 

• 𝑁 =  40 
• 𝑁𝑃 = 60 
• 𝚼 = {0.15,0.2, 0.2, 0.3, 0.55} 
• 𝑝𝑠𝑤𝑎𝑝 = 0.05 

• 𝜑 = 0.5 
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Appendix D.  Inputs for PDP Tests 
 

Zone 𝒔 𝝀 𝝁 

0 0 0 0 
1 10 9 10 
2 19 19 11 
3 8 1 10 
4 6 6 6 

5 16 17 18 
6 9 20 15 
7 20 10 12 
8 14 20 10 
9 18 15 15 

10 5 5 5 
11 7 10 10 

12 20 20 15 
13 13 25 11 
14 17 17 8 
15 9 9 18 
16 2 1 10 
17 4 4 12 

18 3 1 8 
19 7 9 7 
20 13 2 9 
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